A122765
Triangle read by rows: Let p(k, x) = x*p(k-1, x) - p(k-2, x). Then T(k,x) = dp(k,x)/dx.
Original entry on oeis.org
1, -1, 2, -2, -2, 3, 2, -6, -3, 4, 3, 6, -12, -4, 5, -3, 12, 12, -20, -5, 6, -4, -12, 30, 20, -30, -6, 7, 4, -20, -30, 60, 30, -42, -7, 8, 5, 20, -60, -60, 105, 42, -56, -8, 9, -5, 30, 60, -140, -105, 168, 56, -72, -9, 10
Offset: 1
Triangle begins as:
1;
-1, 2;
-2, -2, 3;
2, -6, -3, 4;
3, 6, -12, -4, 5;
-3, 12, 12, -20, -5, 6;
-4, -12, 30, 20, -30, -6, 7;
4, -20, -30, 60, 30, -42, -7, 8;
5, 20, -60, -60, 105, 42, -56, -8, 9;
-
A122765:= func< n,k | k*(-1)^Binomial(n-k+1, 2)*Binomial(Floor((n+k)/2), k) >;
[A122765(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 30 2022
-
(* First program *)
p[0,x]=1; p[1,x]=x-1; p[k_,x_]:= p[k, x]= x*p[k-1,x] -p[k-2,x]; a = Table[Expand[p[n, x]], {n, 0, 10}]; Table[CoefficientList[D[a[[n]], x], x], {n, 2, 10}]//Flatten
(* Second program *)
T[n_, k_]:= k*(-1)^Binomial[n-k+1,2]*Binomial[Floor[(n+k)/2], k];
Table[T[n, k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 30 2022 *)
-
tpol(n) = if (n<=0, 1, if (n==1, x-1, x*tpol(n-1) -tpol(n-2)));
lista(nn) = {for(n=0, nn, pol = deriv(tpol(n)); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
-
def A122765(n, k): return k*(-1)^binomial(n-k+1, 2)*binomial(((n+k)//2), k)
flatten( [[A122765(n,k) for k in range(1,n+1)] for n in range(1,15)] ) # G. C. Greubel, Dec 30 2022
A073044
Triangle read by rows: T(n,k) (n >= 1, n-1 >= k >= 0) = number of n-sequences of 0's and 1's with no pair of adjacent 0's and exactly k pairs of adjacent 1's.
Original entry on oeis.org
2, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 4, 4, 2, 1, 2, 5, 6, 5, 2, 1, 2, 6, 9, 8, 6, 2, 1, 2, 7, 12, 14, 10, 7, 2, 1, 2, 8, 16, 20, 20, 12, 8, 2, 1, 2, 9, 20, 30, 30, 27, 14, 9, 2, 1, 2, 10, 25, 40, 50, 42, 35, 16, 10, 2, 1, 2, 11, 30, 55, 70, 77, 56, 44, 18, 11, 2, 1, 2, 12, 36, 70, 105, 112, 112, 72
Offset: 1
T(5,2)=4 because the sequences of length 5 with 2 pairs 11 are 11101, 11011,10111, 01110. Also the 2 X (5+1) rectangle has 4 domino tilings with 5+2-2 perimeter dominoes. - _Bridget Tenner_, Oct 14 2019
Triangle starts:
2;
2, 1;
2, 2, 1;
2, 3, 2, 1;
2, 4, 4, 2, 1;
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 67-68).
- I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.
Row sums are the Fibonacci numbers (
A000045).
-
G:=z*(2+2*z-t*z)/(1-t*z-z^2):Gser:=simplify(series(G,z=0,17)):for n from 1 to 15 do P[n]:=sort(coeff(Gser,z^n)) od:for n from 1 to 13 do seq(coeff(t*P[n],t^k),k=1..n) od;# yields sequence in triangular form
-
nn = 15; f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[(1 + x) (1 + x - y x)/(1 - y x - x^2), {x, 0, nn}], {x,y}], 1]] //Flatten (* Geoffrey Critzer, Mar 05 2012 *)
-
T(n,k) = binomial((n+k-1)\2,k) + binomial((n+k-2)\2,k) \\ Charles R Greathouse IV, Jun 07 2016
A131301
Regular triangle read by rows: T(n,k) = 3*binomial(floor((n+k)/2),k)-2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 7, 1, 1, 1, 7, 7, 10, 1, 1, 1, 7, 16, 10, 13, 1, 1, 1, 10, 16, 28, 13, 16, 1, 1, 1, 10, 28, 28, 43, 16, 19, 1, 1, 1, 13, 28, 58, 43, 61, 19, 22, 1, 1, 1, 13, 43, 58, 103, 61, 82, 22, 25, 1, 1, 1, 16, 43, 103, 103, 166, 82
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 4, 1, 1;
1, 4, 7, 1, 1;
1, 7, 7, 10, 1, 1;
1, 7, 16, 10, 13, 1, 1;
...
-
for n from 0 to 6 do seq(3*binomial(floor((n+k)/2),k)-2,k=0..n); od; # Nathaniel Johnston, Jun 29 2011
-
t[n_, k_] := 3 Binomial[Floor[(n + k)/2], k] - 2; Table[t[n, k], {n, 11}, {k, 0, n}] // Flatten
(* to view triangle: Table[t[n, k], {n, 5}, {k, 0, n}] // TableForm *) (* Robert G. Wilson v, Feb 28 2015 *)
A248749
Decimal expansion of limit of the real part of f(1+i,n), where f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1).
Original entry on oeis.org
1, 5, 2, 9, 0, 8, 5, 5, 1, 3, 6, 3, 5, 7, 4, 6, 1, 2, 5, 1, 6, 0, 9, 9, 0, 5, 2, 3, 7, 9, 0, 2, 2, 5, 2, 1, 0, 6, 1, 9, 3, 6, 5, 0, 4, 9, 8, 3, 8, 9, 0, 9, 7, 4, 3, 1, 4, 0, 7, 7, 1, 1, 7, 6, 3, 2, 0, 2, 3, 9, 8, 1, 1, 5, 7, 9, 1, 8, 9, 4, 6, 2, 7, 7, 1, 1
Offset: 1
limit = 1.52908551363574612516099052379022521061936504983890974314077117...
n f(x,n) Re(f(1+i,n)) Im(f(1+i,n))
0 1 1 0
1 1 + x 2 1
2 (1 + x + x^2)/(1 + x) 7/5 4/5
3 (1 + 2*x + x^2 + x^3)/(1 + x + x^2) 20/13 9/13
Re(f(1+i,10)) = 815/533 = 1.529080...
Im(f(1+i,10)) = 396/533 = 0.742964...
-
evalf((1+sqrt(2+sqrt(5)))/2, 120); # Vaclav Kotesovec, Oct 19 2014
-
$RecursionLimit = Infinity; $MaxExtraPrecision = Infinity;
f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, 12}]; u = t /. x -> I + 1; {Re[u], Im[u]}
{N[Re[u], 12], N[Im[u], 12]}
t = Table[Factor[f[x, n]], {n, 1, 300}]; u = t /. x -> I + 1;
r1 = N[Re[u][[300]], 130]
r2 = N[Im[u][[300]], 130]
d1 = RealDigits[r1] (* A248749 *)
d2 = RealDigits[r2] (* A248750 *)
A274228
Triangle read by rows: T(n,k) (n>=3, 0<=k<=n-3) = number of n-sequences of 0's and 1's with exactly one pair of adjacent 0's and exactly k pairs of adjacent 1's.
Original entry on oeis.org
2, 3, 2, 4, 4, 2, 5, 8, 5, 2, 6, 12, 12, 6, 2, 7, 18, 21, 16, 7, 2, 8, 24, 36, 32, 20, 8, 2, 9, 32, 54, 60, 45, 24, 9, 2, 10, 40, 80, 100, 90, 60, 28, 10, 2, 11, 50, 110, 160, 165, 126, 77, 32, 11, 2, 12, 60, 150, 240, 280, 252, 168, 96, 36, 12, 2, 13, 72, 195, 350, 455, 448, 364, 216, 117, 40, 13, 2
Offset: 3
n=3 => 100, 001 -> T(3,0) = 2.
n=4 => 0010, 0100, 1001 -> T(4,0) = 3; 0011, 1100 -> T(4,1) = 2.
Triangle starts:
2,
3, 2,
4, 4, 2,
5, 8, 5, 2,
6, 12, 12, 6, 2,
7, 18, 21, 16, 7, 2,
8, 24, 36, 32, 20, 8, 2,
9, 32, 54, 60, 45, 24, 9, 2,
10, 40, 80, 100, 90, 60, 28, 10, 2,
11, 50, 110, 160, 165, 126, 77, 32, 11, 2,
12, 60, 150, 240, 280, 252, 168, 96, 36, 12, 2,
13, 72, 195, 350, 455, 448, 364, 216, 117, 40, 13, 2,
...
-
Table[(k + 1) (Binomial[Floor[(n + k - 2)/2], k + 1] + Binomial[Floor[(n + k - 3)/2], k + 1]) + 2 Binomial[Floor[(n + k - 3)/2], k], {n, 3, 14}, {k, 0, n - 3}] // Flatten (* Michael De Vlieger, Jun 16 2016 *)
-
T(n,k) = (k+1)*(binomial((n+k-2)\2,k+1)+binomial((n+k-3)\2,k+1))+2*binomial((n+k-3)\2,k); \\ Michel Marcus, Jun 17 2016
A122766
Triangle read by rows: let p(n, x) = x*p(n-1, x) - p(n-2, x), then T(n, x) = d^2/dx^2 (p(n, x)).
Original entry on oeis.org
2, -2, 6, -6, -6, 12, 6, -24, -12, 20, 12, 24, -60, -20, 30, -12, 60, 60, -120, -30, 42, -20, -60, 180, 120, -210, -42, 56, 20, -120, -180, 420, 210, -336, -56, 72, 30, 120, -420, -420, 840, 336, -504, -72, 90, -30, 210, 420, -1120, -840, 1512, 504, -720, -90, 110
Offset: 1
Triangle begins as:
2;
-2, 6;
-6, 6, 12;
6, -24, -12, 20;
12, 24, -60, -20, 30;
12, 60, 60, -120, -30, 42;
-20, -60, 180, 120, -210, -42, 56;
20, -120, -180, 420, 210, -336, -56, 72;
-
A122766:= func< n,k | 2*(-1)^Binomial(n-k+1, 2)*Binomial(k+1,2)*Binomial(Floor((n+k+2)/2), k+1) >;
[A122766(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 31 2022
-
(* First program *)
p[0, x]=1; p[1, x]=x-1; p[k_, x_]:= p[k, x]= x*p[k-1, x] -p[k-2, x]; b = Table[Expand[p[n,x]], {n,0,15}]; Table[CoefficientList[D[b[[n]], {x,2}], x], {n,2,14}]//Flatten
(* Second program *)
T[n_, k_]:= 2*(-1)^Binomial[n-k+1,2]*Binomial[k+1,2]*Binomial[Floor[(n +k+2)/2], k+1]; Table[T[n,k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 31 2022 *)
-
tpol(n) = if (n <= 0, 1, if (n == 1, x -1, x*tpol(n-1) - tpol(n-2)));
lista(nn) = {for(n=0, nn, pol = deriv(deriv(tpol(n))); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
-
def A122766(n, k): return 2*(-1)^binomial(n-k+1,2)*binomial(k+1,2)*binomial(((n+k+2)//2), k+1)
flatten([[A122766(n, k) for k in range(1, n+1)] for n in range(1, 15)]) # G. C. Greubel, Dec 31 2022
A131238
Triangle read by rows: T(n,k) = 2*binomial(n,k) - binomial(floor((n+k)/2), k) (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 9, 7, 1, 1, 7, 17, 16, 9, 1, 1, 9, 24, 36, 25, 11, 1, 1, 10, 36, 60, 65, 36, 13, 1, 1, 12, 46, 102, 125, 106, 49, 15, 1, 1, 13, 62, 148, 237, 231, 161, 64, 17, 1, 1, 15, 75, 220, 385, 483, 392, 232, 81, 19, 1, 1, 16, 95, 295, 625, 868, 896, 624, 321, 100, 21, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 3, 1;
1, 4, 5, 1;
1, 6, 9, 7, 1;
1, 7, 17, 16, 9, 1;
1, 9, 24, 36, 25, 11, 1;
1, 10, 36, 60, 65, 36, 13, 1;
...
-
B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 2*B(n,k) - B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
-
B:=Binomial; [2*B(n,k) - B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
-
T := proc (n, k) options operator, arrow; 2*binomial(n, k)-binomial(floor((1/2)*n+(1/2)*k), k) end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 09 2007
-
With[{B = Binomial}, Table[2*B[n, k] - B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
-
b=binomial; T(n,k) = 2*b(n,k) - b((n+k)\2, k);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
-
b=binomial; [[2*b(n,k) - b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
A134513
Triangle read by rows: T(n, k) = binomial(ceiling((n+k)/2), floor((n-k)/2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 3, 3, 4, 4, 1, 1, 1, 6, 6, 5, 5, 1, 1, 4, 4, 10, 10, 6, 6, 1, 1, 1, 10, 10, 15, 15, 7, 7, 1, 1, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1, 6, 6, 35, 35, 56, 56, 36, 36, 10, 10, 1, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
1, 3, 3, 1, 1;
3, 3, 4, 4, 1, 1;
1, 6, 6, 5, 5, 1, 1;
4, 4, 10, 10, 6, 6, 1, 1;
1, 10, 10, 15, 15, 7, 7, 1, 1;
...
Better definition, offset changed to 0, and more terms from
Jinyuan Wang, Jan 25 2025
A122173
Expansion of -x * (x^5+x^4-15*x^3+19*x^2-8*x+1) / (x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1).
Original entry on oeis.org
1, -5, 10, -45, 110, -421, 1148, -4037, 11697, -39250, 117736, -384657, 1177235, -3787218, 11727187, -37389217, 116571621, -369712938, 1157315631, -3659226205, 11481436216, -36237006073, 113856243558, -358967583724, 1128781753801, -3556642214960, 11189229179710
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-30,34,-12,1).
-
M = {{0, -1, -1, -1, -1, -1}, {-1, 0, -1, -1, -1, 0}, {-1, -1, 0, -1, 0, 0}, {-1, -1, -1, 1, 0, 0}, {-1, -1, 0, 0, 1, 0}, {-1, 0, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]
LinearRecurrence[{3,6,-30,34,-12,1},{1,-5,10,-45,110,-421},30] (* Harvey P. Dale, Mar 16 2025 *)
A122174
First row sum of the matrix M^n, where M is the 5 X 5 matrix {{0,-1,-1,-1,-1}, {-1,0,-1,-1,0}, {-1,-1,0,0,0}, {-1,-1,0,1,0}, {-1,0,0,0,1}}.
Original entry on oeis.org
1, -4, 6, -24, 41, -145, 273, -886, 1789, -5457, 11605, -33807, 74761, -210366, 479256, -1313465, 3061242, -8222492, 19501429, -51579259, 123983182, -324067194, 787044384, -2038584810, 4990387355, -12836179872, 31614557443, -80883958143, 200146505560, -509959672813
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (2,5,-13,7,-1).
-
with(linalg): M[1]:=matrix(5,5,[0,-1,-1,-1,-1,-1,0,-1,-1,0,-1,-1,0,0,0,-1,-1,0,1, 0,-1,0,0,0,1]): for n from 2 to 30 do M[n]:=multiply(M[n-1],M[1]) od: 1,seq(M[n][1,1]+M[n][1,2]+M[n][1,3]+M[n][1,4]+M[n][1,5],n=1..30);
-
M = {{0, -1, -1, -1, -1}, {-1, 0, -1, -1, 0}, {-1, -1, 0, 0, 0}, {-1, -1, 0, 1, 0}, {-1, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 25}]
-
a(n) = my(m=[0,-1,-1,-1,-1; -1,0,-1,-1,0; -1,-1,0,0,0; -1,-1,0,1,0; -1,0,0,0,1]); vecsum((m^n)[1,]); \\ Michel Marcus, Jun 21 2017
Comments