cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A122765 Triangle read by rows: Let p(k, x) = x*p(k-1, x) - p(k-2, x). Then T(k,x) = dp(k,x)/dx.

Original entry on oeis.org

1, -1, 2, -2, -2, 3, 2, -6, -3, 4, 3, 6, -12, -4, 5, -3, 12, 12, -20, -5, 6, -4, -12, 30, 20, -30, -6, 7, 4, -20, -30, 60, 30, -42, -7, 8, 5, 20, -60, -60, 105, 42, -56, -8, 9, -5, 30, 60, -140, -105, 168, 56, -72, -9, 10
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2006

Keywords

Comments

Based on the coefficients of derivatives of the polynomials in A130777.

Examples

			Triangle begins as:
   1;
  -1,   2;
  -2,  -2,   3;
   2,  -6,  -3,   4;
   3,   6, -12,  -4,   5;
  -3,  12,  12, -20,  -5,   6;
  -4, -12,  30,  20, -30,  -6,   7;
   4, -20, -30,  60,  30, -42,  -7,   8;
   5,  20, -60, -60, 105,  42, -56,  -8,  9;
		

Crossrefs

Programs

  • Magma
    A122765:= func< n,k | k*(-1)^Binomial(n-k+1, 2)*Binomial(Floor((n+k)/2), k) >;
    [A122765(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 30 2022
    
  • Mathematica
    (* First program *)
    p[0,x]=1; p[1,x]=x-1; p[k_,x_]:= p[k, x]= x*p[k-1,x] -p[k-2,x]; a = Table[Expand[p[n, x]], {n, 0, 10}]; Table[CoefficientList[D[a[[n]], x], x], {n, 2, 10}]//Flatten
    (* Second program *)
    T[n_, k_]:= k*(-1)^Binomial[n-k+1,2]*Binomial[Floor[(n+k)/2], k];
    Table[T[n, k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 30 2022 *)
  • PARI
    tpol(n) = if (n<=0, 1, if (n==1, x-1, x*tpol(n-1) -tpol(n-2)));
    lista(nn) = {for(n=0, nn, pol = deriv(tpol(n)); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
    
  • SageMath
    def A122765(n, k): return k*(-1)^binomial(n-k+1, 2)*binomial(((n+k)//2), k)
    flatten( [[A122765(n,k) for k in range(1,n+1)] for n in range(1,15)] ) # G. C. Greubel, Dec 30 2022

Formula

From G. C. Greubel, Dec 30 2022: (Start)
T(n, k) = coefficient [x^k]( p(n, x) ), where p(n,x) = (2/(x^2-4))*((n+1)*chebyshev_T(n+1,x/2) -n*chebyshev_T(n,x/2) - (x/2)*(chebyshev_U(n,x/2) - chebyshev_U(n-1,x/2))).
T(n, k) = k*(-1)^binomial(n-k+1, 2)*binomial(floor((n+k)/2), k).
T(n, n) = n.
T(n, n-1) = -(n-1).
T(n, n-2) = -2*A000217(n-2).
T(n, n-3) = 2*A000217(n-3).
T(n, 1) = (-1)^binomial(n, 2)*floor((n+1)/2).
T(n, 2) = 2*(-1)^binomial(n-1, 2)*binomial(floor((n+2)/2), 2).
Sum_{k=1..n} T(n, k) = A076118(n).
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^(n-1)*A165202(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = [n=1] - [n=2].
Sum_{k=1..floor((n+1)/2)} (-1)^k*T(n-k+1, k) = (-1)^binomial(n+1, 2)*b(n), where b(n) = 4^floor(n/4)*A026741(n/2) if n is even and b(n) = 4^floor((n-1)/4)*A026741((n-1)/4) if n is odd. (End)

Extensions

Name corrected and more terms from Michel Marcus, Feb 07 2014

A073044 Triangle read by rows: T(n,k) (n >= 1, n-1 >= k >= 0) = number of n-sequences of 0's and 1's with no pair of adjacent 0's and exactly k pairs of adjacent 1's.

Original entry on oeis.org

2, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 4, 4, 2, 1, 2, 5, 6, 5, 2, 1, 2, 6, 9, 8, 6, 2, 1, 2, 7, 12, 14, 10, 7, 2, 1, 2, 8, 16, 20, 20, 12, 8, 2, 1, 2, 9, 20, 30, 30, 27, 14, 9, 2, 1, 2, 10, 25, 40, 50, 42, 35, 16, 10, 2, 1, 2, 11, 30, 55, 70, 77, 56, 44, 18, 11, 2, 1, 2, 12, 36, 70, 105, 112, 112, 72
Offset: 1

Views

Author

Roger Cuculière, Aug 24 2002

Keywords

Comments

T(n,k) is the number of domino tilings of 2 X (n+1) rectangles that have n+2-k perimeter dominoes. - Bridget Tenner, Oct 14 2019

Examples

			T(5,2)=4 because the sequences of length 5 with 2 pairs 11 are 11101, 11011,10111, 01110. Also the 2 X (5+1) rectangle has 4 domino tilings with 5+2-2 perimeter dominoes. - _Bridget Tenner_, Oct 14 2019
Triangle starts:
  2;
  2, 1;
  2, 2, 1;
  2, 3, 2, 1;
  2, 4, 4, 2, 1;
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 67-68).
  • I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.

Crossrefs

Row sums are the Fibonacci numbers (A000045).
Cf. A046854.
Weighted row sums 2*T(n,n) + 3*T(n,n-1) + 4*T(n,n-2) + ... give A320947. - Bridget Tenner, Oct 14 2019

Programs

  • Maple
    G:=z*(2+2*z-t*z)/(1-t*z-z^2):Gser:=simplify(series(G,z=0,17)):for n from 1 to 15 do P[n]:=sort(coeff(Gser,z^n)) od:for n from 1 to 13 do seq(coeff(t*P[n],t^k),k=1..n) od;# yields sequence in triangular form
  • Mathematica
    nn = 15; f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[(1 + x) (1 + x - y x)/(1 - y x - x^2), {x, 0, nn}], {x,y}], 1]] //Flatten (* Geoffrey Critzer, Mar 05 2012 *)
  • PARI
    T(n,k) = binomial((n+k-1)\2,k) + binomial((n+k-2)\2,k) \\ Charles R Greathouse IV, Jun 07 2016

Formula

Recurrence: T(n, k) = T(n-1, k-1) + T(n-2, k).
G.f.: G(t, z) = z*(2+2*z-t*z)/(1-t*z-z^2). - Emeric Deutsch, Feb 01 2005
T(n,k) = binomial(floor((n+k-1)/2),k) + binomial(floor((n+k-2)/2),k). - Jeremy Dover, Jun 07 2016
T(n,k) = A046854(n-1,k) + A046854(n-2,k), where A046854 is extended so that A046854(-1,0) = 1. - Jeremy Dover, Jun 07 2016

Extensions

More terms from Emeric Deutsch, Feb 01 2005

A131301 Regular triangle read by rows: T(n,k) = 3*binomial(floor((n+k)/2),k)-2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 7, 1, 1, 1, 7, 7, 10, 1, 1, 1, 7, 16, 10, 13, 1, 1, 1, 10, 16, 28, 13, 16, 1, 1, 1, 10, 28, 28, 43, 16, 19, 1, 1, 1, 13, 28, 58, 43, 61, 19, 22, 1, 1, 1, 13, 43, 58, 103, 61, 82, 22, 25, 1, 1, 1, 16, 43, 103, 103, 166, 82
Offset: 0

Views

Author

Gary W. Adamson, Jun 27 2007

Keywords

Comments

Row sums = A131300: (1, 2, 3, 7, 14, 27, 49, 86, ...). Reversed triangle = A131299.

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  1,  4,  1,  1;
  1,  4,  7,  1,  1;
  1,  7,  7, 10,  1,  1;
  1,  7, 16, 10, 13,  1,  1;
  ...
		

Crossrefs

Programs

  • Maple
    for n from 0 to 6 do seq(3*binomial(floor((n+k)/2),k)-2,k=0..n); od; # Nathaniel Johnston, Jun 29 2011
  • Mathematica
    t[n_, k_] := 3 Binomial[Floor[(n + k)/2], k] - 2; Table[t[n, k], {n, 11}, {k, 0, n}] // Flatten
    (* to view triangle: Table[t[n, k], {n, 5}, {k, 0, n}] // TableForm *) (* Robert G. Wilson v, Feb 28 2015 *)

Formula

3*A046854 - 2*A000012 as infinite lower triangular matrices (former name).
T(n,k) = 3*binomial(floor((n+k)/2),k)-2. - Nathaniel Johnston, Jun 29 2011

A248749 Decimal expansion of limit of the real part of f(1+i,n), where f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1).

Original entry on oeis.org

1, 5, 2, 9, 0, 8, 5, 5, 1, 3, 6, 3, 5, 7, 4, 6, 1, 2, 5, 1, 6, 0, 9, 9, 0, 5, 2, 3, 7, 9, 0, 2, 2, 5, 2, 1, 0, 6, 1, 9, 3, 6, 5, 0, 4, 9, 8, 3, 8, 9, 0, 9, 7, 4, 3, 1, 4, 0, 7, 7, 1, 1, 7, 6, 3, 2, 0, 2, 3, 9, 8, 1, 1, 5, 7, 9, 1, 8, 9, 4, 6, 2, 7, 7, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

See A046854 for a triangle of coefficients of the numerators and denominators of f(x,n). Note that the limit of f(1,n) is the golden ratio.

Examples

			limit = 1.52908551363574612516099052379022521061936504983890974314077117...
n   f(x,n)                                 Re(f(1+i,n))  Im(f(1+i,n))
0   1                                      1             0
1   1 + x                                  2             1
2   (1 + x + x^2)/(1 + x)                  7/5           4/5
3   (1 + 2*x + x^2 + x^3)/(1 + x + x^2)    20/13         9/13
Re(f(1+i,10)) = 815/533 = 1.529080...
Im(f(1+i,10)) = 396/533 = 0.742964...
		

Crossrefs

Programs

  • Maple
    evalf((1+sqrt(2+sqrt(5)))/2, 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    $RecursionLimit = Infinity; $MaxExtraPrecision = Infinity;
    f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, 12}]; u = t /. x -> I + 1; {Re[u], Im[u]}
    {N[Re[u], 12], N[Im[u], 12]}
    t = Table[Factor[f[x, n]], {n, 1, 300}]; u = t /. x -> I + 1;
    r1 = N[Re[u][[300]], 130]
    r2 = N[Im[u][[300]], 130]
    d1 = RealDigits[r1]  (* A248749 *)
    d2 = RealDigits[r2]  (* A248750 *)

Formula

Equals (1+sqrt(2+sqrt(5)))/2. - Vaclav Kotesovec, Oct 19 2014

A274228 Triangle read by rows: T(n,k) (n>=3, 0<=k<=n-3) = number of n-sequences of 0's and 1's with exactly one pair of adjacent 0's and exactly k pairs of adjacent 1's.

Original entry on oeis.org

2, 3, 2, 4, 4, 2, 5, 8, 5, 2, 6, 12, 12, 6, 2, 7, 18, 21, 16, 7, 2, 8, 24, 36, 32, 20, 8, 2, 9, 32, 54, 60, 45, 24, 9, 2, 10, 40, 80, 100, 90, 60, 28, 10, 2, 11, 50, 110, 160, 165, 126, 77, 32, 11, 2, 12, 60, 150, 240, 280, 252, 168, 96, 36, 12, 2, 13, 72, 195, 350, 455, 448, 364, 216, 117, 40, 13, 2
Offset: 3

Views

Author

Jeremy Dover, Jun 14 2016

Keywords

Examples

			n=3 => 100, 001 -> T(3,0) = 2.
n=4 => 0010, 0100, 1001 -> T(4,0) = 3; 0011, 1100 -> T(4,1) = 2.
Triangle starts:
2,
3, 2,
4, 4, 2,
5, 8, 5, 2,
6, 12, 12, 6, 2,
7, 18, 21, 16, 7, 2,
8, 24, 36, 32, 20, 8, 2,
9, 32, 54, 60, 45, 24, 9, 2,
10, 40, 80, 100, 90, 60, 28, 10, 2,
11, 50, 110, 160, 165, 126, 77, 32, 11, 2,
12, 60, 150, 240, 280, 252, 168, 96, 36, 12, 2,
13, 72, 195, 350, 455, 448, 364, 216, 117, 40, 13, 2,
...
		

Crossrefs

Row sums give A001629.
Cf. A073044.
Columns of table:
T(n,0)=A000027(n-1)
T(n,1)=A007590(n-1)
T(n,2)=A080838(n-1)
T(n,3)=A032091(n)

Programs

  • Mathematica
    Table[(k + 1) (Binomial[Floor[(n + k - 2)/2], k + 1] + Binomial[Floor[(n + k - 3)/2], k + 1]) + 2 Binomial[Floor[(n + k - 3)/2], k], {n, 3, 14}, {k, 0, n - 3}] // Flatten (* Michael De Vlieger, Jun 16 2016 *)
  • PARI
    T(n,k) = (k+1)*(binomial((n+k-2)\2,k+1)+binomial((n+k-3)\2,k+1))+2*binomial((n+k-3)\2,k); \\ Michel Marcus, Jun 17 2016

Formula

T(n,k) = (k+1)*(binomial(floor((n+k-2)/2),k+1)+binomial(floor((n+k-3)/2),k+1))+2*binomial(floor((n+k-3)/2),k).
T(n,k) = (k+1)*A073044(n-2,k+1) + 2*A046854(n-3,k).
T(n,k) = A274742(n,k)+A274742(n-1,k)+A046854(n-3,k).

A122766 Triangle read by rows: let p(n, x) = x*p(n-1, x) - p(n-2, x), then T(n, x) = d^2/dx^2 (p(n, x)).

Original entry on oeis.org

2, -2, 6, -6, -6, 12, 6, -24, -12, 20, 12, 24, -60, -20, 30, -12, 60, 60, -120, -30, 42, -20, -60, 180, 120, -210, -42, 56, 20, -120, -180, 420, 210, -336, -56, 72, 30, 120, -420, -420, 840, 336, -504, -72, 90, -30, 210, 420, -1120, -840, 1512, 504, -720, -90, 110
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2006

Keywords

Examples

			Triangle begins as:
    2;
   -2,    6;
   -6,    6,   12;
    6,  -24,  -12,   20;
   12,   24,  -60,  -20,   30;
   12,   60,   60, -120,  -30,   42;
  -20,  -60,  180,  120, -210,  -42,  56;
   20, -120, -180,  420,  210, -336, -56,  72;
		

Crossrefs

Programs

  • Magma
    A122766:= func< n,k | 2*(-1)^Binomial(n-k+1, 2)*Binomial(k+1,2)*Binomial(Floor((n+k+2)/2), k+1) >;
    [A122766(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 31 2022
    
  • Mathematica
    (* First program *)
    p[0, x]=1; p[1, x]=x-1; p[k_, x_]:= p[k, x]= x*p[k-1, x] -p[k-2, x]; b = Table[Expand[p[n,x]], {n,0,15}]; Table[CoefficientList[D[b[[n]], {x,2}], x], {n,2,14}]//Flatten
    (* Second program *)
    T[n_, k_]:= 2*(-1)^Binomial[n-k+1,2]*Binomial[k+1,2]*Binomial[Floor[(n +k+2)/2], k+1]; Table[T[n,k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 31 2022 *)
  • PARI
    tpol(n) = if (n <= 0, 1, if (n == 1, x -1, x*tpol(n-1) - tpol(n-2)));
    lista(nn) = {for(n=0, nn, pol = deriv(deriv(tpol(n))); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
    
  • SageMath
    def A122766(n, k): return 2*(-1)^binomial(n-k+1,2)*binomial(k+1,2)*binomial(((n+k+2)//2), k+1)
    flatten([[A122766(n, k) for k in range(1, n+1)] for n in range(1, 15)]) # G. C. Greubel, Dec 31 2022

Formula

From G. C. Greubel, Dec 31 2022: (Start)
T(n, k) = 2*(-1)^binomial(n-k+1, 2)*binomial(k+1,2)*binomial(floor((n+k +2)/2), k+1).
T(n, 1) = 2*(-1)^binomial(n,2)*binomial(floor((n+3)/2), 2)
T(n, n) = 2*A000217(n).
Sum_{k=1..n} T(n, k) = 2*A104555(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = 2*([n=1] - [n=2]). (End)

Extensions

Edited by N. J. A. Sloane, Oct 01 2006
Name corrected and more terms from Michel Marcus, Feb 07 2014

A131238 Triangle read by rows: T(n,k) = 2*binomial(n,k) - binomial(floor((n+k)/2), k) (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 9, 7, 1, 1, 7, 17, 16, 9, 1, 1, 9, 24, 36, 25, 11, 1, 1, 10, 36, 60, 65, 36, 13, 1, 1, 12, 46, 102, 125, 106, 49, 15, 1, 1, 13, 62, 148, 237, 231, 161, 64, 17, 1, 1, 15, 75, 220, 385, 483, 392, 232, 81, 19, 1, 1, 16, 95, 295, 625, 868, 896, 624, 321, 100, 21, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 21 2007

Keywords

Comments

Row sums = A027934: (1, 2, 5, 11, 24, 51, 107, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  5,  1;
  1,  6,  9,  7,  1;
  1,  7, 17, 16,  9,  1;
  1,  9, 24, 36, 25, 11,  1;
  1, 10, 36, 60, 65, 36, 13, 1;
  ...
		

Crossrefs

Programs

  • GAP
    B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> 2*B(n,k) - B(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 12 2019
  • Magma
    B:=Binomial; [2*B(n,k) - B(Floor((n+k)/2), k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2019
    
  • Maple
    T := proc (n, k) options operator, arrow; 2*binomial(n, k)-binomial(floor((1/2)*n+(1/2)*k), k) end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 09 2007
  • Mathematica
    With[{B = Binomial}, Table[2*B[n, k] - B[Floor[(n+k)/2], k], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    b=binomial; T(n,k) = 2*b(n,k) - b((n+k)\2, k);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    b=binomial; [[2*b(n,k) - b(floor((n+k)/2), k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 12 2019
    

Formula

T(n,k) = 2*A007318(n,k) - A046854(n,k) as infinite lower triangular matrices, where A007318 = Pascal's triangle and A046854 = Pascal's triangle with repeats, by columns.

Extensions

More terms added by G. C. Greubel, Jul 12 2019

A134513 Triangle read by rows: T(n, k) = binomial(ceiling((n+k)/2), floor((n-k)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 3, 3, 4, 4, 1, 1, 1, 6, 6, 5, 5, 1, 1, 4, 4, 10, 10, 6, 6, 1, 1, 1, 10, 10, 15, 15, 7, 7, 1, 1, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1, 6, 6, 35, 35, 56, 56, 36, 36, 10, 10, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 28 2007

Keywords

Comments

Old name: abs(A049310 * A097806).
Equivalently, T(n,k) = A168561(n,k) + A168561(n,k+1).
Row sums = A062114: (1, 2, 3, 6, 9, 16, 25, 42, 67, ...).
Triangle A046854 = abs(A097806 * A049310).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  2,  2,  1,  1;
  1,  3,  3,  1,  1;
  3,  3,  4,  4,  1,  1;
  1,  6,  6,  5,  5,  1,  1;
  4,  4, 10, 10,  6,  6,  1,  1;
  1, 10, 10, 15, 15,  7,  7,  1,  1;
  ...
		

Crossrefs

Formula

abs(A049310 * A097806) as infinite lower triangular matrices.

Extensions

Better definition, offset changed to 0, and more terms from Jinyuan Wang, Jan 25 2025

A122173 Expansion of -x * (x^5+x^4-15*x^3+19*x^2-8*x+1) / (x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1).

Original entry on oeis.org

1, -5, 10, -45, 110, -421, 1148, -4037, 11697, -39250, 117736, -384657, 1177235, -3787218, 11727187, -37389217, 116571621, -369712938, 1157315631, -3659226205, 11481436216, -36237006073, 113856243558, -358967583724, 1128781753801, -3556642214960, 11189229179710
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 17 2006

Keywords

Crossrefs

Cf. A046854. Cf. A046854. Cf. A007700, A059455. Cf. A065941.

Programs

  • Mathematica
    M = {{0, -1, -1, -1, -1, -1}, {-1, 0, -1, -1, -1, 0}, {-1, -1, 0, -1, 0, 0}, {-1, -1, -1, 1, 0, 0}, {-1, -1, 0, 0, 1, 0}, {-1, 0, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{3,6,-30,34,-12,1},{1,-5,10,-45,110,-421},30] (* Harvey P. Dale, Mar 16 2025 *)

Formula

G.f.: -x*(x^5+x^4-15*x^3+19*x^2-8*x+1)/(x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1). [Colin Barker, Oct 19 2012]

Extensions

Sequence edited by Joerg Arndt, Colin Barker, Bruno Berselli, Oct 19 2012

A122174 First row sum of the matrix M^n, where M is the 5 X 5 matrix {{0,-1,-1,-1,-1}, {-1,0,-1,-1,0}, {-1,-1,0,0,0}, {-1,-1,0,1,0}, {-1,0,0,0,1}}.

Original entry on oeis.org

1, -4, 6, -24, 41, -145, 273, -886, 1789, -5457, 11605, -33807, 74761, -210366, 479256, -1313465, 3061242, -8222492, 19501429, -51579259, 123983182, -324067194, 787044384, -2038584810, 4990387355, -12836179872, 31614557443, -80883958143, 200146505560, -509959672813
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 17 2006

Keywords

Crossrefs

Programs

  • Maple
    with(linalg): M[1]:=matrix(5,5,[0,-1,-1,-1,-1,-1,0,-1,-1,0,-1,-1,0,0,0,-1,-1,0,1, 0,-1,0,0,0,1]): for n from 2 to 30 do M[n]:=multiply(M[n-1],M[1]) od: 1,seq(M[n][1,1]+M[n][1,2]+M[n][1,3]+M[n][1,4]+M[n][1,5],n=1..30);
  • Mathematica
    M = {{0, -1, -1, -1, -1}, {-1, 0, -1, -1, 0}, {-1, -1, 0, 0, 0}, {-1, -1, 0, 1, 0}, {-1, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 25}]
  • PARI
    a(n) = my(m=[0,-1,-1,-1,-1; -1,0,-1,-1,0; -1,-1,0,0,0; -1,-1,0,1,0; -1,0,0,0,1]); vecsum((m^n)[1,]); \\ Michel Marcus, Jun 21 2017

Formula

a(n) = 2*a(n-1)+5*a(n-2)-13*a(n-3)+7*a(n-4)-a(n-5); a(0)=1, a(1)=-4, a(2)=6, a(3)=-24, a(4)=41 (follows from the minimal polynomial x^5-2*x^4-5*x^3+13*x^2-7*x+1 of the matrix M).
G.f.: (1-3*x^3+9*x^2-6*x)/(1+x^5-7*x^4+13*x^3-5*x^2-2*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009

Extensions

Edited by N. J. A. Sloane, Oct 29 2006
Previous Showing 41-50 of 58 results. Next