cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A320331 Number of strict T_0 multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 30, 61, 110, 207, 381, 711, 1250
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			The a(1) = 1 through a(5) = 17 multiset partitions:
  {{1}}  {{2}}    {{3}}        {{4}}          {{5}}
         {{1,1}}  {{1,1,1}}    {{2,2}}        {{1,1,3}}
                  {{1},{2}}    {{1,1,2}}      {{1,2,2}}
                  {{1},{1,1}}  {{1},{3}}      {{1},{4}}
                               {{1,1,1,1}}    {{2},{3}}
                               {{1},{1,2}}    {{1,1,1,2}}
                               {{2},{1,1}}    {{1},{1,3}}
                               {{1},{1,1,1}}  {{1},{2,2}}
                                              {{2},{1,2}}
                                              {{3},{1,1}}
                                              {{1,1,1,1,1}}
                                              {{1},{1,1,2}}
                                              {{1,1},{1,2}}
                                              {{2},{1,1,1}}
                                              {{1},{1,1,1,1}}
                                              {{1,1},{1,1,1}}
                                              {{1},{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,UnsameQ@@dual[#]]&]],{n,8}]

A330783 Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 3, 8, 27, 94, 385, 1673, 8079, 41614, 231447, 1364697, 8559575, 56544465, 393485452, 2867908008, 21869757215, 173848026202, 1438593095272, 12360614782433, 110119783919367, 1015289796603359, 9674959683612989, 95147388659652754, 964559157655032720, 10067421615492769230
Offset: 0

Views

Author

Gus Wiseman, Jan 02 2020

Keywords

Comments

The (weakly) normal version is A116540.

Examples

			The a(1) = 1 through a(3) = 8 set multipartitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{1}}  {{1},{1,2}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{3}}
The a(4) = 27 set multipartitions:
  {{1},{1},{1},{1}}  {{1},{1},{1,2}}  {{1},{1,2,3}}  {{1,2,3,4}}
  {{1},{1},{1},{2}}  {{1},{1},{2,3}}  {{1,2},{1,2}}
  {{1},{1},{2},{2}}  {{1},{2},{1,2}}  {{1,2},{1,3}}
  {{1},{1},{2},{3}}  {{1},{2},{1,3}}  {{1},{2,3,4}}
  {{1},{2},{3},{4}}  {{1},{2},{3,4}}  {{1,2},{3,4}}
                     {{1},{3},{1,2}}  {{1,3},{2,4}}
                     {{1},{3},{2,4}}  {{1,4},{2,3}}
                     {{1},{4},{2,3}}  {{2},{1,3,4}}
                     {{2},{3},{1,4}}  {{3},{1,2,4}}
                     {{2},{4},{1,3}}  {{4},{1,2,3}}
                     {{3},{4},{1,2}}
		

Crossrefs

Allowing edges to be multisets gives is A035310.
The strict case is A318402.
The constant case is A000005.
The (weakly) normal version is A116540.
Unlabeled set multipartitions are A049311.
Set multipartitions of prime indices are A050320.
Set multipartitions of integer partitions are A089259.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],And@@UnsameQ@@@#&]],{n,0,5}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n)))/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020

A320451 Number of multiset partitions of uniform integer partitions of n in which all parts have the same length.

Original entry on oeis.org

1, 1, 3, 5, 8, 7, 19, 11, 24, 26, 38, 28, 85, 46, 89, 99, 146, 110, 246, 163, 326, 305, 416, 376, 816, 591, 903, 971, 1450, 1295, 2517, 1916, 3045, 3141, 4042, 4117, 7073, 5736, 8131, 9026, 12658, 11514, 19459, 16230, 24638, 27129, 33747, 32279, 55778, 45761, 71946
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Comments

An integer partitions is uniform if all parts appear with the same multiplicity.
Terms can be computed by the formula: Sum_{d|n} Sum_{i>=1} P(n/d,i) * Sum_{h|i*d} M(i*d/h, i, h, d) where P(n,k) is the number of partitions of n into k distinct parts and M(h,w,r,s) is the number of nonnegative integer h X w matrices up to row permutations with all row sums equal to r and all column sums equal to s. The cases of M(h,w,w,h) and M(n,n,k,k) are enumerated by the arrays A257462 and A257463. - Andrew Howroyd, Feb 04 2022

Examples

			The a(9) = 26 multiset partitions:
  {{9}}
  {{1,8}}
  {{2,7}}
  {{3,6}}
  {{4,5}}
  {{1,2,6}}
  {{1,3,5}}
  {{1},{8}}
  {{2,3,4}}
  {{2},{7}}
  {{3,3,3}}
  {{3},{6}}
  {{4},{5}}
  {{1},{2},{6}}
  {{1},{3},{5}}
  {{2},{3},{4}}
  {{3},{3},{3}}
  {{1,1,1,2,2,2}}
  {{1,1,1},{2,2,2}}
  {{1,1,2},{1,2,2}}
  {{1,1},{1,2},{2,2}}
  {{1,2},{1,2},{1,2}}
  {{1,1,1,1,1,1,1,1,1}}
  {{1,1,1},{1,1,1},{1,1,1}}
  {{1},{1},{1},{2},{2},{2}}
  {{1},{1},{1},{1},{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[SameQ@@Length/@Split[Sort[Join@@#]],SameQ@@Length/@#]&]],{n,10}]

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 04 2022

A320698 Numbers whose product of prime indices is a prime power (A246655).

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112, 114, 115, 118, 121, 124
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers whose prime indices are all powers of a common prime number.

Examples

			The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (2), (3), (1,2), (4), (2,2), (1,3), (5), (1,1,2), (1,4), (7), (1,2,2), (8), (1,1,3), (2,4), (1,5), (9), (1,1,1,2), (3,3), (2,2,2), (1,1,4), (11), (1,7), (1,1,2,2), (1,8), (1,1,1,3), (13), (1,2,4), (1,1,5), (1,9), (1,1,1,1,2), (4,4), (1,3,3), (16), (1,2,2,2), (1,1,1,4), (2,8).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimePowerQ[Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]]&]
  • PARI
    is(n) = my(f=factor(n)[, 1]~, p=1); for(k=1, #f, p=p*primepi(f[k])); isprimepower(p) \\ Felix Fröhlich, Oct 20 2018

A323531 Number of square multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 9, 12, 18, 24, 36, 48, 69, 97, 139, 196, 283, 402, 576, 819, 1161, 1635, 2301, 3209, 4469, 6193, 8571, 11812, 16291, 22404, 30850, 42414, 58393, 80305, 110578, 152091, 209308, 287686, 395352, 542413, 743603, 1017489, 1390510, 1896482
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2019

Keywords

Comments

A multiset partition is square if the number of parts is equal to the number of parts in each part.

Examples

			The a(3) = 1 through a(9) = 12 square multiset partitions:
  (3)  (4)       (5)       (6)       (7)       (8)       (9)
       (11)(11)  (21)(11)  (21)(21)  (22)(21)  (22)(22)  (32)(22)
                           (22)(11)  (31)(21)  (31)(22)  (32)(31)
                           (31)(11)  (32)(11)  (31)(31)  (33)(21)
                                     (41)(11)  (32)(21)  (41)(22)
                                               (33)(11)  (41)(31)
                                               (41)(21)  (42)(21)
                                               (42)(11)  (43)(11)
                                               (51)(11)  (51)(21)
                                                         (52)(11)
                                                         (61)(11)
                                                         (111)(111)(111)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Union@@(Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@#]]&/@IntegerPartitions[n,{k}])],{k,Sqrt[n]}],{n,30}]

A338331 Numbers whose set of distinct prime indices (A304038) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions whose set of distinct parts is a singleton or pairwise coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          16: {1,1,1,1}     32: {1,1,1,1,1}
      2: {1}         17: {7}           33: {2,5}
      3: {2}         18: {1,2,2}       34: {1,7}
      4: {1,1}       19: {8}           35: {3,4}
      5: {3}         20: {1,1,3}       36: {1,1,2,2}
      6: {1,2}       22: {1,5}         37: {12}
      7: {4}         23: {9}           38: {1,8}
      8: {1,1,1}     24: {1,1,1,2}     40: {1,1,1,3}
      9: {2,2}       25: {3,3}         41: {13}
     10: {1,3}       26: {1,6}         43: {14}
     11: {5}         27: {2,2,2}       44: {1,1,5}
     12: {1,1,2}     28: {1,1,4}       45: {2,2,3}
     13: {6}         29: {10}          46: {1,9}
     14: {1,4}       30: {1,2,3}       47: {15}
     15: {2,3}       31: {11}          48: {1,1,1,1,2}
		

Crossrefs

A302798 is the squarefree case.
A304709 counts partitions with pairwise coprime distinct parts, with ordered version A337665 and Heinz numbers A304711.
A304711 does not consider singletons relatively prime, except for (1).
A304712 counts the partitions with these Heinz numbers.
A316476 is the version for indivisibility instead of relative primality.
A328867 is the pairwise non-coprime instead of pairwise coprime version.
A337600 counts triples of this type, with ordered version A337602.
A338330 is the complement.
A000961 lists powers of primes.
A051424 counts pairwise coprime or singleton partitions.
A304038 gives the distinct prime indices of each positive integer.
A327516 counts pairwise coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Select[Range[100],#==1||PrimePowerQ[#]||CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

Equals A304711 \/ A000961.

A168111 Sum of the partition numbers of the proper divisors of n, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 8, 4, 10, 1, 22, 1, 18, 11, 30, 1, 47, 1, 57, 19, 59, 1, 121, 8, 104, 34, 158, 1, 242, 1, 261, 60, 300, 23, 514, 1, 493, 105, 706, 1, 959, 1, 1066, 217, 1258, 1, 1927, 16, 2010, 301, 2545, 1, 3442, 64, 3898, 494, 4568, 1, 6555, 1, 6845, 841, 8610
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2009

Keywords

Comments

Row sums of triangle A168021 except the first column.
Row sums of triangle A168016 except the last column.

Crossrefs

Programs

  • Maple
    A047968 := proc(n) add(combinat[numbpart](d), d= numtheory[divisors](n) ) ; end proc: A000041 := proc(n) combinat[numbpart](n) ; end proc: A168111 := proc(n) A047968(n)-A000041(n) ; end proc: seq(A168111(n),n=1..90) ; # R. J. Mathar, Jan 25 2010
  • Mathematica
    a[ n_] := If[n < 1, 0, Sum[ PartitionsP[ d] Boole[ d < n], {d, Divisors @ n}]]; (* Michael Somos, Feb 24 2014 *)
  • PARI
    A168111(n) = sumdiv(n,d,(dAntti Karttunen, Nov 14 2017

Formula

a(n) = A047968(n) - A000041(n).
G.f.: Sum_{n > 0} A000041(n)*x^(2*n)/(1-x^n). - Mircea Merca, Feb 24 2014
G.f.: x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 8*x^8 + 4*x^9 + 10*x^10 + x^11 + ... - Michael Somos, Feb 24 2014

Extensions

Terms beyond a(12) from R. J. Mathar, Jan 25 2010
New name from Omar E. Pol, Feb 25 2014

A296134 Number of twice-factorizations of n of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n).

Examples

			The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsQ],{n,100}]
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A296134(n) = if(1==n,n,sumdiv(A052409(n),d,A000009(d))); \\ Antti Karttunen, Jul 29 2018

Formula

From Antti Karttunen, Jul 31 2018: (Start)
a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d).
a(n) = A047966(A052409(n)). (End)

Extensions

More terms from Antti Karttunen, Jul 29 2018

A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.

Original entry on oeis.org

1, 1, 4, 5, 12, 9, 25, 17, 42, 39, 64, 58, 132, 103, 173, 200, 303, 299, 491, 492, 756, 832, 1122, 1257, 1858, 1975, 2646, 3083, 4057, 4567, 6118, 6844, 8913, 10265, 12912, 14931, 19089, 21639, 27003, 31397, 38830, 44585, 55138, 63263, 77371, 89585, 108076
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of constant multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6:
  ((6))
  ((52))
  ((42))
  ((33))
  ((3)(3))
  ((3))((3))
  ((411))
  ((321))
  ((222))
  ((2)(2)(2))
  ((2))((2))((2))
  ((3111))
  ((2211))
  ((21)(21))
  ((21))((21))
  ((21111))
  ((111111))
  ((111)(111))
  ((11)(11)(11))
  ((111))((111))
  ((11))((11))((11))
  ((1)(1)(1)(1)(1)(1))
  ((1)(1)(1))((1)(1)(1))
  ((1)(1))((1)(1))((1)(1))
  ((1))((1))((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A302596 Powers of prime numbers of prime index.

Original entry on oeis.org

1, 3, 5, 9, 11, 17, 25, 27, 31, 41, 59, 67, 81, 83, 109, 121, 125, 127, 157, 179, 191, 211, 241, 243, 277, 283, 289, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 625, 709, 729, 739, 773, 797, 859, 877, 919, 961, 967, 991, 1031, 1063, 1087, 1153
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
001: {}
003: {{1}}
005: {{2}}
009: {{1},{1}}
011: {{3}}
017: {{4}}
025: {{2},{2}}
027: {{1},{1},{1}}
031: {{5}}
041: {{6}}
059: {{7}}
067: {{8}}
081: {{1},{1},{1},{1}}
083: {{9}}
109: {{10}}
121: {{3},{3}}
125: {{2},{2},{2}}
		

Crossrefs

Programs

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{p in A006450} 1/(p-1). - Amiram Eldar, Sep 19 2022
Previous Showing 21-30 of 57 results. Next