cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 147 results. Next

A063074 Number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box; number of ways to cut a 2n X 2n chessboard into two equal-area pieces along a non-descending line from lower left to upper right.

Original entry on oeis.org

1, 2, 8, 58, 526, 5448, 61108, 723354, 8908546, 113093022, 1470597342, 19499227828, 262754984020, 3589093760726, 49596793134484, 692260288169282, 9747120868919060, 138298900243896166, 1975688102624819336, 28396056820503468894, 410363630540693436398
Offset: 0

Views

Author

Wouter Meeussen, Aug 03 2001

Keywords

Comments

Also the number of subsets of {1,...,4*n} containing exactly 2*n elements with total sum n*(4*n+1) (see also A060468 for a related sequence). This is of course the same as the number of partitions of n*(4*n+1) having 2*n distinct parts of length at most 4*n. This number is the coefficient of t^0 q^0 in Product_{k=1..4*n} (t*q^k + 1/(t*q^k)). - Roland Bacher, May 02 2002
A bijection with a dissection as above of the 2n X 2n checkerboard is given by subtracting 1,2,3,...,2n of the smallest, second-smallest, etc. element in the subset. Example for n=2: {1,2,7,8} (yields the checkerboard partition {1-1,2-2,7-3,8-4}={0,0,4,4}), {1,3,6,8} (yields {1-1,3-2,6-3,8-4}={0,1,3,4}), {1,4,5,8} (yields {0,2,2,4}), {1,4,6,7} (yields {0,2,3,3}), {3,4,5,6} (yields {2,2,2,2}), {2,4,5,7} (yields {1,2,2,3}), {2,3,6,7} (yields {1,1,3,3}), {2,3,5,8} (yields {1,1,2,4}).
Appears to be the number of random walks of length 4n, moves +/-1, starting and ending at 0 and with signed area 0 under the path. It would be nice to have a lower bound of the form a(n) > c*2^{4n}/n^d. - David_Mumford(AT)brown.edu, Jun 25 2003

Examples

			For a 4 X 4 board (n=2) the 8 partitions are (4,4,0,0), (4,3,1,0), (4,2,1,1), (4,2,2,0), (3,3,2,0), (3,3,1,1), (3,2,2,1), (2,2,2,2).
		

Crossrefs

Bisection of row n=2 of A204459. - Alois P. Heinz, Jan 18 2012

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n*(4*n+1), 4*n, 2*n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 18 2012
  • Mathematica
    Table[ Length@Select[ IntegerPartitions[ 2n^2 ], Length[ # ] <= 2n && First[ # ] <= 2n& ], {n, 1, 5} ] or faster: Table[ T[ 2n^2, 2n, 2n ], {n, 0, 24} ] with T[ m, a, b ] as defined in A047993.
    (* second program: *)
    b[n_, i_, t_] := b[n, i, t] =  If[i < t || n < t (t + 1)/2 || n > t (2i - t + 1)/2, 0, If[n == 0, 1, b[n, i - 1, t] + If[n < i, 0, b[n - i, i - 1, t - 1]]]]; a[n_] := b[n (4n + 1), 4n, 2n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = A029895(2n) = A067059(2n, 2n) = A107110(2n, 2n^2). a(n) seems to be close to (sqrt(75)/Pi)*16^n/(20n^2+6n+1). - Henry Bottomley, May 12 2005

Extensions

More terms from Alois P. Heinz, Jan 18 2012

A340652 Number of non-isomorphic twice-balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 0, 2, 3, 6, 20, 65, 134, 482, 1562, 4974, 15466, 51768, 179055, 631737, 2216757, 7905325, 28768472, 106852116, 402255207, 1532029660, 5902839974, 23041880550, 91129833143, 364957188701, 1478719359501, 6058859894440, 25100003070184, 105123020009481, 445036528737301
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2021

Keywords

Comments

We define a multiset partition to be twice-balanced if all of the following are equal:
(1) the number of parts;
(2) the number of distinct vertices;
(3) the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 6 multiset partitions (empty column indicated by dot):
  {{1}}  .  {{1},{2,2}}  {{1,1},{2,2}}  {{1},{1},{2,3,3}}
            {{2},{1,2}}  {{1,2},{1,2}}  {{1},{2},{2,3,3}}
                         {{1,2},{2,2}}  {{1},{2},{3,3,3}}
                                        {{1},{3},{2,3,3}}
                                        {{2},{3},{1,2,3}}
                                        {{3},{3},{1,2,3}}
		

Crossrefs

The co-balanced version is A319616.
The singly balanced version is A340600.
The cross-balanced version is A340651.
The version for factorizations is A340655.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A303975 counts distinct prime factors in prime indices.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A047993 counts balanced partitions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340653 counts balanced factorizations.
- A340657/A340656 list numbers with/without a twice-balanced factorization.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    G(m,n,k,y=1)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, y^t*subst(x*Polrev(K(q, t, min(k,n\t))), x, x^t)/t, O(x*x^n)))); s/m!}
    seq(n)={Vec(1 + sum(k=1,n, polcoef(G(k,n,k,y) - G(k-1,n,k,y) - G(k,n,k-1,y) + G(k-1,n,k-1,y), k, y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024

A383092 Number of integer partitions of n having at most one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 22, 28, 34, 46, 58, 69, 90, 114, 141, 178, 216, 271, 338, 418, 506, 630, 769, 941, 1140, 1399, 1675, 2051, 2454, 2975, 3561, 4289, 5094, 6137, 7274, 8692, 10269, 12249, 14414, 17128, 20110, 23767, 27872, 32849, 38346, 45094, 52552, 61533
Offset: 0

Views

Author

Gus Wiseman, Apr 19 2025

Keywords

Examples

			The partition (222211) has 1 permutation with all equal run-lengths: (221122), so is counted under a(10).
The partition (33211111) has no permutation with all equal run-lengths, so is counted under a(13).
The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
The complement is A383090, ranks A383089.
Partitions of this type are ranked by A383091 = positions of terms <= 1 in A382857.
For a unique choice we have A383094, ranks A383112.
For run-sums instead of lengths we have A383095 + A383096, ranks A383099 \/ A383100.
The complement for run-sums is A383097, ranks A383015, positions of terms > 1 in A382877.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Length/@Split[#]&]]<=1&]],{n,0,15}]

Formula

a(n) = A382915(n) + A383094(n).

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A340693 Number of integer partitions of n where each part is a divisor of the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 7, 7, 10, 10, 14, 14, 17, 19, 24, 24, 32, 33, 42, 43, 58, 59, 75, 79, 98, 104, 124, 128, 156, 166, 196, 204, 239, 251, 292, 306, 352, 372, 426, 445, 514, 543, 616, 652, 745, 790, 896, 960, 1080, 1162, 1311, 1400, 1574, 1692, 1892
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2021

Keywords

Comments

The only strict partitions counted are (), (1), and (2,1).
Is there a simple generating function?

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  11  21   22    311    2211    331      2222      333
         111  1111  2111   111111  2221     4211      4221
                    11111          4111     221111    51111
                                   211111   311111    222111
                                   1111111  11111111  321111
                                                      21111111
                                                      111111111
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428), with strict case A340830.
The case where length also divides n is A326842 (A326847).
The Heinz numbers of these partitions are A340606.
The version for factorizations is A340851, with reciprocal version A340853.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A067539 counts partitions with integer geometric mean (A326623).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A330950 = partitions of n whose Heinz number is divisible by n (A324851).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}]

A382302 Number of integer partitions of n with greatest part, greatest multiplicity, and number of distinct parts all equal.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 4, 3, 3, 4, 4, 3, 6, 5, 8, 8, 13, 13, 16, 17, 21, 22, 25, 26, 32, 34, 37, 44, 47, 55, 62, 72, 78, 94, 103, 118, 132, 151, 163, 189, 205, 230, 251, 284, 307, 346, 377, 420, 462, 515, 562, 629, 690, 763
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Examples

			The a(n) partitions for n = 1, 2, 10, 13, 14, 19, 20, 21:
  1  .  32221   332221   333221   4333321     43333211    43333221
        322111  333211   3322211  43322221    44322221    433332111
                3322111  3332111  433321111   433222211   443222211
                4321111           443221111   443321111   444321111
                                  543211111   4332221111  4332222111
                                  4322221111              4333221111
                                                          4432221111
                                                          5432211111
		

Crossrefs

Without the middle statistic we have A000009, ranked by A055932.
Counting partitions by the LHS gives A008284 (strict A008289), rank statistic A061395.
Counting partitions by the middle statistic gives A091602, rank statistic A051903.
Counting partitions by the RHS gives A116608/A365676, rank statistic A001221.
Without the LHS we have A239964, ranked by A212166.
Without the RHS we have A240312, ranked by A381542.
The Heinz numbers of these partitions are listed by A381543.
A000041 counts integer partitions.
A047993 counts partitions with max part = length, ranks A106529.
A116598 counts ones in partitions, rank statistic A007814.
A381438 counts partitions by last part part of section-sum partition.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#==Max@@Length/@Split[#]==Length[Union[#]]&]],{n,0,30}]
  • PARI
    A_x(N) = {if(N<1,[0],my(x='x+O('x^(N+1))); concat([0],Vec(sum(i=1,N, prod(j=1,i, (x^j-x^((i+1)*j))/(1-x^j)) - prod(j=1,i, (x^j-x^(i*j))/(1-x^j))))))}
    A_x(60) \\ John Tyler Rascoe, Mar 25 2025

Formula

G.f.: Sum_{i>0} (B(i+1,i,x) - B(i,i,x)) where B(a,c,x) = Product_{j=1..c} (x^j - x^(a*j))/(1 - x^j). - John Tyler Rascoe, Mar 25 2025

A384892 Number of permutations of {1..n} with all equal lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 1, 2, 4, 13, 54, 314, 2120, 16700, 148333, 1468512, 16019532, 190899736, 2467007774, 34361896102, 513137616840, 8178130784179, 138547156531410, 2486151753462260, 47106033220679060, 939765362754015750, 19690321886243848784, 432292066866187743954
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2025

Keywords

Examples

			The permutation (1,2,5,6,3,4,7,8) has maximal runs ((1,2),(5,6),(3,4),(7,8)), with lengths (2,2,2,2), so is counted under a(8).
The a(0) = 1 through a(4) = 13 permutations:
  ()  (1)  (12)  (123)  (1234)
           (21)  (132)  (1324)
                 (213)  (1432)
                 (321)  (2143)
                        (2413)
                        (2431)
                        (3142)
                        (3214)
                        (3241)
                        (3412)
                        (4132)
                        (4213)
                        (4321)
		

Crossrefs

For subsets instead of permutations we have A243815, for anti-runs A384889.
For strict partitions and distinct lengths we have A384178, anti-runs A384880.
For integer partitions and distinct lengths we have A384884, anti-runs A384885.
For distinct lengths we have A384891, for anti-runs A384907.
For partitions we have A384904, strict A384886.
A010027 counts permutations by maximal anti-runs, for runs A123513.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    a(n)=if(n,sumdiv(n,d,sum(i=0,d-1,(-1)^i*(d-i)!*binomial(d-1,i))),1) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{d|n} A000255(d-1). - Christian Sievers, Jun 22 2025

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025

A384904 Number of integer partitions of n with all equal lengths of maximal runs of consecutive parts decreasing by 1 but not by 0.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 9, 9, 14, 17, 23, 25, 40, 41, 59, 68, 92, 99, 140, 151, 204, 229, 296, 328, 433, 476, 606, 685, 858, 955, 1203, 1336, 1654, 1858, 2266, 2537, 3102, 3453, 4169, 4680, 5611, 6262, 7495, 8358, 9927, 11105, 13096, 14613, 17227, 19179, 22459
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2025

Keywords

Examples

			The partition (6,5,5,4,2,1) has maximal runs ((6,5),(5,4),(2,1)), with lengths (2,2,2), so is counted under a(23).
The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (311)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (511)      (422)
                                     (411)     (4111)     (611)
                                     (3111)    (31111)    (2222)
                                     (111111)  (1111111)  (3221)
                                                          (3311)
                                                          (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For subsets instead of strict partitions we have A243815, distinct lengths A384175.
For distinct instead of equal lengths we have A384882, counting gaps of 0 A384884.
The strict case is A384886.
Counting gaps of 0 gives A384887.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,30}]
  • PARI
    A_q(N) = {Vec(1+sum(k=1,floor(-1/2+sqrt(2+2*N)), sum(i=1,(N/(k*(k+1)/2))+1, q^((k*i*(2+i*(k-1)))/2)/(1-q^(k*i))*prod(j=1,i-1, 1 + q^(2*k*j)/(1 - q^(k*j))))) + O('q^(N+1)))} \\ John Tyler Rascoe, Aug 20 2025

Formula

G.f.: 1 + Sum_{i,k>0} q^((i*k*(2 + i*(k-1)))/2) * Product_{j=1..i-1} ( 1 + q^(2*k*j)/(1 - q^(k*j)) ) / (1 - q^(i*k)). - John Tyler Rascoe, Aug 20 2025

A063075 Number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box; number of ways to cut a 2n X 2n chessboard into two equal-area pieces along a non-descending line from lower left to upper right and passing through the center.

Original entry on oeis.org

1, 2, 8, 48, 390, 3656, 37834, 417540, 4836452, 58130756, 719541996, 9121965276, 117959864244, 1551101290792, 20689450250926, 279395018584860, 3813887739881184, 52557835511244660, 730403326965323706
Offset: 0

Views

Author

Wouter Meeussen, Aug 03 2001

Keywords

Examples

			For a 6 X 6 board (n=3) the partition (6,6,2,2,2,0) represents a Ferrers plot that does not pass through the center of a 6*6 box.
From _Paul D. Hanna_, Dec 12 2006: (Start)
Central q-binomial coefficients begin:
  1;
  1 + q;
  1 + q + 2*q^2 + q^3 + q^4;
  1 + q + 2*q^2 + 3*q^3 + 3*q^4 + 3*q^5 + 3*q^6 + 2*q^7 + q^8 + q^9;
the coefficients of q in these polynomials form the rows of triangle A063746.
The sums of squared terms in rows of A063746 equal this sequence. (End)
		

Crossrefs

Programs

  • Mathematica
    Table[(#.#)&@Table[T[k, n, n], {k, 0, n^2}], {n, 0, 24}] (* with T[m, a, b] as defined in A047993 *)
  • PARI
    a(n)=polcoef((prod(j=1,n,(1-q^(n+j))/(1-q^j)))^2,n^2,q) \\ Tani Akinari, Jan 28 2022

Formula

a(n) = Sum_{k=0..n^2} A063746(n,k)^2; i.e., equals the sums of the squares of the coefficients of q in the central q-binomial coefficients. - Paul D. Hanna, Dec 12 2006
a(n) = [q^(n^2)](Product_{j=1..n} (1-q^(n+j))/(1-q^j))^2. - Tani Akinari, Jan 28 2022
a(n) ~ sqrt(3) * 2^(4*n - 1/2) / (Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Feb 02 2022

A076822 Number of partitions of the n-th triangular number involving only the numbers 1..n and with exactly n terms.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 32, 94, 289, 910, 2934, 9686, 32540, 110780, 381676, 1328980, 4669367, 16535154, 58965214, 211591218, 763535450, 2769176514, 10089240974, 36912710568, 135565151486, 499619269774, 1847267563742, 6850369296298
Offset: 0

Views

Author

Jon Perry, Nov 19 2002

Keywords

Comments

Asymptotic to (sqrt(3)/(2*Pi))*(4^n/n^2). It is the number of lattice paths from (0,0) to (n,n-1) with steps only to the right or upward and having area n(n-1)/2 between the path and the x-axis. In the reference by Takács use formula (77) with a=n, b=n(n-1)/2 and then Stirling's formula. - Kent E. Morrison, May 28 2016
a(n) is the number of fair dice with n sides and expected value (n+1)/2 with distinct composition of numbers between 1 and n. - Felix Huber, Aug 02 2024

Examples

			a(4)=5 as T(4)=10= 1+1+4+4 =1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
		

Crossrefs

Cf. A002838. [From R. J. Mathar, Sep 20 2008]
Cf. A188181 (columns 1, 2).

Programs

  • JavaScript
    ccc=new Array(); cccc=0;
    for (n=1; n<11; n++)
    {
        str='cc=0; for (i1=1; i1<'+(n+1)+'; i1++)';
        str2='i1';
        str3='i1';
        tn=1;
        for (i=2; i<=n; i++)
        {
            str+='for (i'+i+'=i'+(i-1)+'; i'+i+'<'+(n+1)+'; i'+i+'++)';
            str2+='+i'+i;
            str3+=', ", ", i'+i;
            tn+=i;
        }
        str+='if ('+str2+'=='+tn+') document.print(++cc, ":", '+str3+', "
    ")'; eval(str); ccc[cccc++ ]=cc; document.print('****
    '); } document.write(ccc);
  • Mathematica
    f[n_] := Block[{p = IntegerPartitions[n(n + 1)/2, n]}, Length[ Select[p, Length[ # ] == n &]]]; Table[ f[n], {n, 1, 13}]

Formula

a(n) = A067059(n,n+1); also a(n) = T[n*(n-1)/2, n-1, n] with T[ ] defined as in A047993. - Martin Fuller, Jun 27 2006

Extensions

Edited and extended to 12 terms by Robert G. Wilson v, Nov 23 2002
Further terms from Max Alekseyev, May 24 2007
a(0)=1 prepended by Alois P. Heinz, May 28 2016

A326852 Number of non-constant integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 16, 0, 1, 7, 11, 0, 30, 0, 40, 18, 1, 0, 201, 0, 1, 38, 124, 0, 426, 0, 211, 73, 1, 48, 1391, 0, 1, 131, 1741, 0, 1774, 0, 951, 2145, 1, 0, 8345, 0, 1853, 381, 2382, 0, 6718, 2761, 10633, 623, 1, 0, 68037
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326838.

Examples

			The a(6) = 1 through a(16) = 11 partitions (empty columns not shown):
  (321)  (4211)  (52111)  (633)     (7211111)  (53322)  (8332)
                          (642)                (53331)  (8422)
                          (651)                (54222)  (8431)
                          (4332)               (54321)  (8521)
                          (4422)               (54411)  (8611)
                          (4431)               (55221)  (42222211)
                          (6222)               (55311)  (43222111)
                          (6321)                        (43321111)
                          (6411)                        (44221111)
                          (322221)                      (44311111)
                          (332211)                      (82111111)
                          (333111)
                          (422211)
                          (432111)
                          (441111)
                          (621111)
		

Crossrefs

The possibly constant case is A326843.
The strict case is A326851.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]],{n,0,30}]
Previous Showing 91-100 of 147 results. Next