cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 99 results. Next

A101563 a(n) = (-1)^n * coefficient of x^n in Sum_{k>=1} x^(k-1)/(1+10*x^k).

Original entry on oeis.org

1, 9, 101, 1009, 10001, 99909, 1000001, 10001009, 100000101, 999990009, 10000000001, 100000100909, 1000000000001, 9999999000009, 100000000010101, 1000000010001009, 10000000000000001, 99999999900099909
Offset: 0

Views

Author

Paul Barry, Dec 07 2004

Keywords

Crossrefs

Programs

  • Magma
    A101563:= func< n | (&+[(-1)^(n-k)*(10)^k*0^((n+1) mod (k+1)): k in [0..n]]) >;
    [A101563(n): n in [0..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    A101563[n_]:= (-1)^n*DivisorSum[n+1, (-10)^(#-1) &];
    Table[A101563[n], {n,0,40}] (* G. C. Greubel, Jun 25 2024 *)
  • SageMath
    def A101563(n): return sum((-1)^(n+k)*(10)^k*0^((n+1)%(k+1)) for k in range(n+1))
    [A101563(n) for n in range(41)] # G. C. Greubel, Jun 25 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (10)^k * A051731(n+1, k+1).
a(n) = (-1)^n * Sum_{d|n+1} (-10)^(d-1). - G. C. Greubel, Jun 25 2024

A158441 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1+x^n) /n ).

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 7, 7, 9, 14, 18, 20, 31, 34, 42, 61, 69, 83, 109, 127, 156, 203, 228, 276, 347, 404, 477, 591, 683, 801, 990, 1132, 1323, 1598, 1837, 2148, 2560, 2929, 3405, 4018, 4608, 5319, 6244, 7124, 8184, 9569, 10877, 12465, 14457, 16412, 18761, 21633
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Also the number of partitions of n in which each part occurs a triangle number (>=0) times. - Seiichi Manyama, May 11 2018

Examples

			From _Seiichi Manyama_, Mar 11 2018: (Start)
n | Partitions of n in which each part occurs a triangle number (>=0) times.
--+-------------------------------------------------------------------------
1 | 1;
2 | 2;
3 | 3 = 2+1 = 1+1+1;
4 | 4 = 3+1;
5 | 5 = 4+1 = 3+2 = 2+1+1+1;
6 | 6 = 5+1 = 4+2 = 3+2+1 = 3+1+1+1 = 2+2+2 = 1+1+1+1+1+1;
7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1 = 4+1+1+1 = 2+2+2+1; (End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; -add((-1)^d, d=divisors(n)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, May 11 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(k*j))*(1 + x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2018 *)
  • PARI
    {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, sigma(m)*x^m/(1+x^m+x*O(x^n))/m)), n))}
    
  • PARI
    N=99; x='x+O('x^N);
    gf=1/prod(n=1,N,eta(x^n)^((-1)^(n-1)));
    Vec(gf) /* Joerg Arndt, Jun 24 2011 */

Formula

Euler transform of A048272. [Vladeta Jovovic, Mar 28 2009]
G.f.: 1/prod(n>=1, P(x^n)^((-1)^(n-1)) ) where P(x) = prod(k>=1, 1-x^k ), see Pari code. [Joerg Arndt, Jun 24 2011]
G.f.: Product_{k>0} (Sum_{m>=0} x^(k*m*(m+1)/2)) = (1+x+x^3+x^6+...)*(1+x^2+x^6+x^12+...)*(1+x^3+x^9+x^18+...)*... . - Seiichi Manyama, May 11 2018
a(n) ~ (log(2))^(3/8) * exp(Pi*sqrt(2*log(2)*n/3)) / (2^(11/8) * 3^(3/8) * Pi^(1/4) * n^(7/8)). - Vaclav Kotesovec, Oct 08 2018

A290973 Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1).

Original entry on oeis.org

-2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2017

Keywords

Examples

			2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n/d-1-a(d), n/d), d=
            numtheory[divisors](n) minus {n})-2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 27 2017
  • Mathematica
    nn=60;
    rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1,{n,nn}],{x,0,nn}]],x];
    Array[a,nn]/.First[rus]

Formula

For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d).

A322081 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+1)*d^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 3, 4, -1, 1, 7, 10, 1, 2, 1, 15, 28, 11, 6, 0, 1, 31, 82, 55, 26, 4, 2, 1, 63, 244, 239, 126, 30, 8, -2, 1, 127, 730, 991, 626, 196, 50, 1, 3, 1, 255, 2188, 4031, 3126, 1230, 344, 43, 13, 0, 1, 511, 6562, 16255, 15626, 7564, 2402, 439, 91, 6, 2, 1, 1023, 19684, 65279, 78126, 45990, 16808, 3823, 757, 78, 12, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,     1,  ...
   0,  1,   3,    7,    15,    31,  ...
   2,  4,  10,   28,    82,   244,  ...
  -1,  1,  11,   55,   239,   991,  ...
   2,  6,  26,  126,   626,  3126,  ...
   0,  4,  30,  196,  1230,  7564,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d + 1) d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+1)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^j).

A325939 Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k).

Original entry on oeis.org

0, 1, -1, 2, -1, 1, -1, 3, -2, 1, -1, 3, -1, 1, -3, 4, -1, 1, -1, 3, -3, 1, -1, 5, -2, 1, -3, 3, -1, 1, -1, 5, -3, 1, -3, 4, -1, 1, -3, 5, -1, 1, -1, 3, -5, 1, -1, 7, -2, 1, -3, 3, -1, 1, -3, 5, -3, 1, -1, 5, -1, 1, -5, 6, -3, 1, -1, 3, -3, 1, -1, 7, -1, 1, -5, 3, -3, 1, -1, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 09 2019

Keywords

Comments

Number of even divisors of n minus number of odd strong divisors of n (i.e. odd divisors > 1).

Crossrefs

Cf. A032741, A048272, A075997 (partial sums), A325937.

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^# &, # > 1 &], {n, 1, 80}]
  • PARI
    A325939(n) = sumdiv(n, d, if(1==d,0,((-1)^d))); \\ Antti Karttunen, Sep 20 2019

Formula

G.f.: Sum_{k>=2} (-1)^k * x^k / (1 - x^k).
a(n) = Sum_{d|n, d>1} (-1)^d.
a(n) = 1 - A048272(n).

A333809 G.f.: Sum_{k>=1} (-1)^(k + 1) * x^(k*(k + 1)) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, -1, 2, 0, 1, 0, 1, 0, 2, -1, 1, 2, 1, -1, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, -1, 3, 0, 1, -1, 1, 1, 2, -1, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, -1, 2, 0, 1, -1, 2, 2, 1, -2, 1, 0, 3, -1, 2, 0, 1, -1, 2, 0, 1, 0, 2, 0, 2, -2, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Comments

Number of odd divisors of n that are < sqrt(n) minus number of even divisors of n that are < sqrt(n).

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

From Ridouane Oudra, Sep 06 2025: (Start)
a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(d+1).
a(n) = A333781(n) - A258998(n).
a(n) = A048272(n) - A348515(n). (End)

A348951 a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(n/d).

Original entry on oeis.org

0, 1, -1, 1, -1, 0, -1, 2, -1, 0, -1, 3, -1, 0, -2, 2, -1, 1, -1, 1, -2, 0, -1, 4, -1, 0, -2, 1, -1, 2, -1, 3, -2, 0, -2, 2, -1, 0, -2, 4, -1, 0, -1, 1, -3, 0, -1, 5, -1, 1, -2, 1, -1, 0, -2, 4, -2, 0, -1, 4, -1, 0, -3, 3, -2, 0, -1, 1, -2, 2, -1, 4, -1, 0, -3, 1, -2, 0, -1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/#) &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348951(n) = sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * x^(k*(k + 1)) / (1 + x^k).
a(n) = A258998(n) - A348515(n). - Ridouane Oudra, Aug 21 2025
a(n) = A333781(n) - A048272(n). - Ridouane Oudra, Sep 01 2025

A356389 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d + 1) ) /k.

Original entry on oeis.org

1, 2, 10, 34, 218, 1308, 10596, 74688, 793152, 7931520, 94504320, 1054218240, 14662840320, 205279764480, 3427909632000, 50923531008000, 907545606912000, 16335820924416000, 323185344975360000, 6220416698689536000, 140360358705186816000, 3087927891514109952000
Offset: 1

Views

Author

Seiichi Manyama, Aug 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Sum[-(-1)^(k/d), {d, Divisors[k]}]/k, {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Aug 07 2022 *)
    Table[n! * Sum[(2*DivisorSigma[0, 2*k] - 3*DivisorSigma[0, k])/k, {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Aug 07 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1))/k);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, log(1+x^k)/k)/(1-x)))

Formula

a(n) = n! * Sum_{k=1..n} A048272(k)/k.
E.g.f.: (1/(1-x)) * Sum_{k>0} log(1 + x^k)/k.
a(n) ~ n! * log(2) * (log(n) + 2*gamma - log(2)/2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 07 2022

A060184 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 0, -1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 1, -2, 0, 1, 3, 1, 5, 6, 0, 0, -1, -1, 2, 1, 5, 5, -2, 0, -2, -3, 2, 2, 9, 10, 0, 1, 4, 3, 0, 4, 0, 2, 9, 9, -3, 1, 3, -2, -7, 2, 0, 3, 14, 16, 0, 2, 6, -1, -9, 2, 0, 3, 15, 17, -2, 1, 8, 19, 10, -6, 4, 0, -1, 0, 15, 22, 0, 1, 9, 21, 7, -13, 2, 0, -2, -4, 11, 20, -4, 2, 15, 33, 14, -15, 3, 0, -4, -10, 10, 28, 0, 3
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  0  2 -1  2  0  2 -2  3  0  2 ...
        1  0  1  2  1  1  1  6 -1 ...
              1  0  1  0  5 -1  5 ...
		

Crossrefs

Programs

  • Mathematica
    max = 27(*rows*); t[n_, k_] := Module[{m, mm, q, s}, mm = Array[m, k]; s = Sum[q^Total[mm]/Times @@ (1+q^mm), Evaluate[Sequence @@ Transpose[{mm, Join[{1}, Most[mm]+1], max-Range[k-1, 0, -1]}]]]; SeriesCoefficient[s, {q, 0, n}]]; Table[Print[an = Table[t[n, k], {k, Floor[(Sqrt[8*n+1]-1)/2], 1, -1}]]; an, {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 21 2014 *)

Formula

G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1+q^m_1)*(1+q^m_2)*...*(1+q^m_k)) = Sum_n T(n, k)*q^n.

Extensions

More terms from Vladeta Jovovic, Sep 20 2007

A069262 a(n) = 4*prime(n)^2.

Original entry on oeis.org

16, 36, 100, 196, 484, 676, 1156, 1444, 2116, 3364, 3844, 5476, 6724, 7396, 8836, 11236, 13924, 14884, 17956, 20164, 21316, 24964, 27556, 31684, 37636, 40804, 42436, 45796, 47524, 51076, 64516, 68644, 75076, 77284, 88804, 91204, 98596
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

Previous name was: Numbers n such that sum(d|n,(-1)^d) = 3.

Crossrefs

Programs

Formula

a(n) = 4*prime(n)^2 = 4*A001248(n).
Numbers k such that A048272(k) = -3.
Sum_{n>=1} 1/a(n) = P(2)/4, where P is the prime zeta function. - Amiram Eldar, Dec 19 2020

Extensions

New name from existing formula by Michel Marcus, Mar 23 2016
Previous Showing 41-50 of 99 results. Next