cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A347517 Partial sums of A347516.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 40, 41, 44, 45, 47, 49, 51, 52, 55, 56, 58, 60, 62, 63, 66, 67, 69, 71, 73, 74, 77, 78, 80, 82, 84, 85, 88, 89, 91, 93, 95, 96, 99, 100, 102, 104, 107, 108, 111, 112, 115, 117, 119, 120, 124, 125, 127, 129, 132, 133, 136
Offset: 1

Views

Author

Seiichi Manyama, Sep 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, # <= n^(1/3) &]; Accumulate @ Array[f, 100] (* Amiram Eldar, Sep 04 2021 *)
  • PARI
    N=99; x='x+O('x^N); Vec(sum(k=1, N^(1/3), x^k^3/(1-x^k))/(1-x))
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^3<=k)); \\ Michel Marcus, Sep 05 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k^3)/(1 - x^k).

A109470 Sum of first n noncubes.

Original entry on oeis.org

2, 5, 9, 14, 20, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560
Offset: 1

Views

Author

Jonathan Vos Post, Aug 28 2005

Keywords

Examples

			a(6) = 2 + 3 + 4 + 5 + 6 + 7 = 27.
a(7) = 2 + 3 + 4 + 5 + 6 + 7 + 9 = 36.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[With[{no=60},Complement[Range[no],Range[Floor[Power[no, (3)^-1]]]^3]]]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    a(n) = sum(i=1, n, i + sqrtnint(i + sqrtnint(i, 3), 3)); \\ Michel Marcus, Jun 20 2024
  • Python
    from sympy import integer_nthroot
    def A109470(n): return ((m:=n+(k:=integer_nthroot(n,3)[0])+int(n>=(k+1)**3-k))*(m+1)>>1)-((r:=integer_nthroot(m,3)[0])*(r+1)>>1)**2 # Chai Wah Wu, Jun 17 2024
    

Formula

a(n) = Sum_{i=1..n} A007412(i).
a(n) = A000217(A007412(n)) - Sum_{i=1..floor((A007412(n)^(1/3)))} i^3.
a(n) = A000217(A007412(n)) - A000217(floor(A007412(n)^(1/3)))^2.
Let R = A007412(n) and S = floor(R^(1/3)); then a(n) = (R*(R+1))/2 - ((S*(S+1))/2)^2. - Gerald Hillier, Dec 21 2008

A113768 a(1) = 1, a(n+1) = a(n) + floor(a(n)^(1/3)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 133, 138, 143, 148, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 224, 230, 236, 242, 248, 254, 260
Offset: 1

Views

Author

Jonathan Vos Post, Jan 19 2006

Keywords

Comments

First 17 terms identical to A079645 (Integer part of the cube root of n divides n). Replacing cube root by square root gives A033638.

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else Self(n-1)+Floor(Self(n-1)^(1/3)): n in [1..75]]; // Vincenzo Librandi, Jul 29 2019
  • Maple
    A[1]:= 1:
    for n from 1 to 100 do A[n+1] := A[n] + floor(A[n]^(1/3)) od:
    seq(A[i],i=1..100); # Robert Israel, Jul 28 2019
  • Mathematica
    NestList[#+Floor[Surd[#,+3]]&,1,70] (* Harvey P. Dale, Jan 21 2013 *)

Formula

Conjecture: a(n) ~ (2/3)*n*sqrt((2/3)*n). - José María Grau Ribas, Feb 13 2024

Extensions

Corrected and extended by Harvey P. Dale, Jan 21 2013

A132296 Sum of the noncube numbers less than or equal to n.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449
Offset: 1

Views

Author

Cino Hilliard, Nov 07 2007

Keywords

Examples

			Let n=10. The sum of the noncube numbers <= 10 is 2+3+4+5+6+7+9+10 = 46, the 10th entry in the sequence.
		

Programs

  • Mathematica
    Accumulate[Table[If[IntegerQ[n^(1/3)],0,n],{n,60}]] (* Harvey P. Dale, Oct 16 2012 *)
  • PARI
    g(n)=for(x=1,n,r=floor(x^(1/3));sumcu=(r*(r+1)/2)^2;sn=x*(x+1)/2;print1(sn-sumcu","))
    
  • Python
    from sympy import integer_nthroot
    def A132296(n): return n*(n+1)-(((r:=integer_nthroot(n,3)[0])*(r+1))**2>>1)>>1 # Chai Wah Wu, Sep 03 2024

Formula

Let r = floor(n^(1/3)) = A048766(n). Then a(n) = n(n+1)/2 - (r(r+1)/2)^2 = A000217(n)-A000537(r).

A134918 Ceiling(n^(5/3)).

Original entry on oeis.org

1, 4, 7, 11, 15, 20, 26, 32, 39, 47, 55, 63, 72, 82, 92, 102, 113, 124, 136, 148, 160, 173, 187, 200, 214, 229, 243, 259, 274, 290, 306, 323, 340, 357, 375, 393, 411, 430, 449, 468, 488, 508, 528, 549, 570, 591, 613, 634, 657
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 17 2007

Keywords

Crossrefs

Programs

A187112 a(n) = cube root of the largest proper divisor of A187104(n).

Original entry on oeis.org

2, 3, 3, 4, 5, 5, 6, 5, 7, 8, 7, 9, 7, 10, 9, 7, 11, 12, 11, 13, 14, 13, 11, 15, 16, 11, 17, 15, 13, 18, 19, 11, 17, 13, 20, 21, 19, 22, 13, 23, 17, 24, 21, 13, 25, 19, 17, 26, 23, 27, 28, 25, 19, 29, 30, 17, 27, 31, 23, 17, 32, 33, 29, 19, 25, 34, 17, 23, 35, 19, 31, 36, 37, 33, 38, 19, 39, 29, 40, 35, 19, 23, 41, 42, 31, 37, 23, 43, 44, 29, 39, 45, 46, 41, 23, 47, 31, 35, 48, 23, 49, 43, 50
Offset: 1

Views

Author

Zak Seidov, Mar 05 2011

Keywords

Crossrefs

Cf. A187104 (largest proper divisor is a cube).

Programs

  • PARI
    lista(nn) = {forcomposite(n=1, nn, if (ispower(divisors(n)[numdiv(n)-1], 3, &k), print1(k, ", ")););} \\ Michel Marcus, Aug 09 2014

Formula

a(n) = A048766(A032742(A187104(n))). - Michel Marcus, Aug 09 2014

A191291 The number of bases >=2 in which n is 3-digit number.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5
Offset: 1

Views

Author

Vladimir Shevelev, May 29 2011

Keywords

Crossrefs

Cf. A191279.

Programs

Formula

a(n) = floor(sqrt(n))-floor(n^(1/3)) = A000196(n) - A048766(n).

A258262 Cubes that are a sum of the cubes of three primes.

Original entry on oeis.org

128787625, 153130375, 356400829, 647214625, 1102302937, 1115157653, 1214767763, 1454419637, 3463512697, 14796346375, 18630700451, 21184951663, 21323063917, 21740999671, 24820429213, 29704593673, 32005984375, 38580208939, 51770001583, 53540005609, 68769820673, 74352915125, 89374579111, 94507253875, 113872553423
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2015

Keywords

Comments

See comment in A258865.

Examples

			.   n |          a(n)
. ----+----------------------------------------------------
.   1 |     128787625 |   505^3 |  59^3 + 163^3 + 499^3
.   2 |     153130375 |   535^3 |  349^3 + 379^3 + 383^3
.   3 |     356400829 |   709^3 |  193^3 + 461^3 + 631^3
.   4 |     647214625 |   865^3 |  11^3 + 607^3 + 751^3
.   5 |    1102302937 |  1033^3 |  599^3 + 691^3 + 823^3
.   6 |    1115157653 |  1037^3 |  59^3 + 233^3 + 1033^3
.   7 |    1214767763 |  1067^3 |  97^3 + 269^3 + 1061^3
.   8 |    1454419637 |  1133^3 |  577^3 + 797^3 + 911^3
.   9 |    3463512697 |  1513^3 |  337^3 + 967^3 + 1361^3
.  10 |   14796346375 |  2455^3 |  1049^3 + 1789^3 + 1993^3
.  11 |   18630700451 |  2651^3 |  281^3 + 1889^3 + 2281^3
.  12 |   21184951663 |  2767^3 |  103^3 + 2179^3 + 2213^3
.  13 |   21323063917 |  2773^3 |  331^3 + 467^3 + 2767^3
.  14 |   21740999671 |  2791^3 |  769^3 + 1879^3 + 2447^3
.  15 |   24820429213 |  2917^3 |  31^3 + 1951^3 + 2591^3
.  16 |   29704593673 |  3097^3 |  1237^3 + 2081^3 + 2659^3
.  17 |   32005984375 |  3175^3 |  809^3 + 1789^3 + 2953^3
.  18 |   38580208939 |  3379^3 |  641^3 + 1993^3 + 3121^3
.  19 |   51770001583 |  3727^3 |  1399^3 + 1667^3 + 3541^3
.  20 |   53540005609 |  3769^3 |  11^3 + 1783^3 + 3631^3
.  21 |   68769820673 |  4097^3 |  1187^3 + 1861^3 + 3929^3
.  22 |   74352915125 |  4205^3 |  1657^3 + 1697^3 + 4019^3
.  23 |   89374579111 |  4471^3 |  1931^3 + 3163^3 + 3697^3
.  24 |   94507253875 |  4555^3 |  521^3 + 2833^3 + 4153^3
.  25 |  113872553423 |  4847^3 |  593^3 + 1237^3 + 4817^3  .
		

Crossrefs

Programs

  • Haskell
    a258262 n = a258262_list !! (n-1)
    a258262_list = filter ((== 1) . a010057) a258865_list

A263846 Floor of cube root of n-th prime.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

N. J. A. Sloane, Nov 09 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Surd[#,3]]&/@Prime[Range[120]] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    a(n) = sqrtnint(prime(n), 3); \\ Michel Marcus, Nov 10 2015

Formula

a(n) = A048766(A000040(n)). - Michel Marcus, Nov 10 2015

A277780 a(n) is the least k > n such that n*k^2 is a cube.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 27, 72, 80, 88, 96, 104, 112, 120, 54, 136, 144, 152, 160, 168, 176, 184, 81, 200, 208, 64, 224, 232, 240, 248, 108, 264, 272, 280, 288, 296, 304, 312, 135, 328, 336, 344, 352, 360, 368, 376, 162, 392, 400, 408, 416, 424, 128, 440
Offset: 1

Views

Author

Peter Kagey, Oct 30 2016

Keywords

Comments

a(n) is bounded above by 8*n (A008590) because n*(8*n)^2 = (4*n)^3.
If and only if n is cubefree, a(n) = 8n. - David A. Corneth, Nov 01 2016
Theorem: If n = q*m^3 with q cubefree then k = q*(m+1)^3. - Hartmut F. W. Hoft, Nov 02 2016
Proof: let q have u distinct prime divisors p_i. Then q = Product_{i=1..u}(p_i^e_i) where e_i > 0 since p_i|q and e_i < 3 since q is cubefree. Therefore, e_i = 1 or e_i = 2. This yields q|k, i.e., q*t = k. Now for n*k^2 = q*m^3*q^2*t^2 = (q*m)^3 * t^2 to be a cube, t must be a cube. Now, k > n, so q*t/(q*m^3) = t/m^3. The least cube > m^3 is (m+1)^3 so k = q*(m+1)^3 which completes the proof. - David A. Corneth, Nov 03 2016

Examples

			a(24) = 81  because 24 *  81^2 =  54^3;
a(25) = 200 because 25 * 200^2 = 100^3;
a(26) = 208 because 26 * 208^2 = 104^3;
a(27) = 64  because 27 *  64^2 =  48^3.
The cubefree part of 144 is 18. The cubefull part of 144 is 8 = 2^3. Therefore, a(144) = 18 * 3^3 = 486. - _David A. Corneth_, Nov 01 2016
		

Crossrefs

Programs

  • Mathematica
    Table[k = n + 1; While[! IntegerQ[(n k^2)^(1/3)], k++]; k, {n, 55}] (* Michael De Vlieger, Nov 04 2016 *)
  • PARI
    a(n) = {my(k = n+1); while (!ispower(n*k^2, 3), k++); k;} \\ Michel Marcus, Oct 31 2016
    
  • PARI
    a(n) = {my(f = factor(n)); f[, 2] = f[, 2]%3; f=factorback(f); n = sqrtnint(n/f,3); (n+1)^3 * f} \\ David A. Corneth, Nov 01 2016

Formula

a(n) = A050985(n) * A000578(1+A048766(A008834(n))). [Formula given in comments expressed with A-numbers] - Antti Karttunen, Nov 02 2016.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + (3*zeta(4) + 3*zeta(5) + zeta(6))/zeta(3) = 7.13539675963975495073... . - Amiram Eldar, Feb 17 2024
Previous Showing 31-40 of 48 results. Next