cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A118851 Product of parts in n-th partition in Abramowitz and Stegun order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 3, 4, 2, 1, 5, 4, 6, 3, 4, 2, 1, 6, 5, 8, 9, 4, 6, 8, 3, 4, 2, 1, 7, 6, 10, 12, 5, 8, 9, 12, 4, 6, 8, 3, 4, 2, 1, 8, 7, 12, 15, 16, 6, 10, 12, 16, 18, 5, 8, 9, 12, 16, 4, 6, 8, 3, 4, 2, 1, 9, 8, 14, 18, 20, 7, 12, 15, 16, 20, 24, 27, 6, 10, 12, 16, 18, 24, 5, 8, 9, 12, 16, 4
Offset: 0

Views

Author

Alford Arnold, May 01 2006

Keywords

Comments

Let Theta(n) denote the set of norm values corresponding to all the partitions of n. The following results hold regarding this set: (i) Theta(n) is a subset of Theta(n+1); (ii) A prime p will appear as a norm only for partitions of n>=p; (iii) There exists a prime p not in Theta(n) for all n>=6; (iv) Let h(k) be the prime floor function which gives the greatest prime less than or equal to the k, then the prime p=h(n+1) does not belong to Theta(n); and (v) The primes not in the set Theta(n) are A000720(A000792(n)) - A000720(n). - Abhimanyu Kumar, Nov 25 2020

Examples

			a(9) = 4 because the 9th partition is [2,2] and 2*2 = 4.
Table T(n,k) starts:
  1;
  1;
  2, 1;
  3, 2,  1;
  4, 3,  4,  2,  1;
  5, 4,  6,  3,  4, 2,  1;
  6, 5,  8,  9,  4, 6,  8,  3,  4,  2, 1;
  7, 6, 10, 12,  5, 8,  9, 12,  4,  6, 8, 3, 4,  2,  1;
  8, 7, 12, 15, 16, 6, 10, 12, 16, 18, 5, 8, 9, 12, 16, 4, 6, 8, 3, 4, 2, 1;
		

References

  • Abramowitz and Stegun, Handbook (1964) page 831.

Crossrefs

Cf. A000041 (row lengths), A006906 (row sums).

Programs

  • PARI
    C(sig)={vecprod(sig)}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 19 2020

Formula

a(n) = A085643(n)/A048996(n).
T(n,k) = A005361(A036035(n,k)). - Andrew Howroyd, Oct 19 2020

Extensions

Corrected and extended by Franklin T. Adams-Watters, May 26 2006

A119826 Number of ternary words of length n with no 000's.

Original entry on oeis.org

1, 3, 9, 26, 76, 222, 648, 1892, 5524, 16128, 47088, 137480, 401392, 1171920, 3421584, 9989792, 29166592, 85155936, 248624640, 725894336, 2119349824, 6187737600, 18065963520, 52746101888, 153999606016, 449623342848, 1312738101504, 3832722100736, 11190167090176, 32671254584832
Offset: 0

Views

Author

Emeric Deutsch, May 26 2006

Keywords

Comments

Column 0 of A119825.
From Wolfdieter Lang, Dec 08 2020: (Start)
The sequence b(n) = a(n-1), for n >= 1, and b(0) = 1, with o.g.f. Gb(x) = (1 - x - x^2 - x^3)*G(x), where G(x) = 1/(1 - 2*x - 2*x^2 - 2*x^3) generates A077835, is the INVERT transform of the tribonacci sequence {Trib(k+2)}_{k >= 1}, with Trib(n) = A000073(n). See the Bernstein and Sloane link for INVERT.
The proof that (1 - 2*x - 2*x^2 - 2*x^3) = (1 - x - x^2 - x^3)*(1 - Sum_{k = 1..M} Trib(k+2)*x^k), for M >= 3, up to terms starting with Trib(M+3)*x^{M+1} can be done by induction, using the tribonacci recurrence. Letting M -> infinity one obtains the o.g.f. of {b(n)}_{n>=0} from the one given by the INVERT transform.
The explicit form of b(n), for n >= 1, is given in terms of the partition array A048996 (M_0-multinomials) with the multivariate row polynomials with indeterminates {Trib(k+2)}_{k = 1..n}. See the example section instead of giving the general baroque partition formula. (End)

Examples

			a(4)=76 because among the 3^4=81 ternary words of length 4 only 0000, 0001, 0002, 1000 and 2000 contain 000's.
Partition formula from INVERT with T(n) = Trib(n+2) = A000073(n+2) (see the W. Lang comment above) a(4) = 76 = b(5) = 1*T(5) + (2*T(1)*T(4) + 2*T(2)*T(3)) + (3*T(1)^2*T(3) + 3*T(1)*T(2)^2) + 4*T(1)^3*T(2) + 1*T(1)^5, from row n = 5 of A048996: [1, 2, 2, 3, 3, 4, 1]. - _Wolfdieter Lang_, Dec 08 2020
		

Crossrefs

Cf. A119825, A119827 (exactly one 000), A231430 (one or more 000).

Programs

  • Maple
    g:=(1+z+z^2)/(1-2*z-2*z^2-2*z^3): gser:=series(g,z=0,32): seq(coeff(gser,z,n),n=0..28);
    # second Maple program:
    a:= n-> (<<0|1|0>, <0|0|1>, <2|2|2>>^n. <<1, 3, 9>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    nn=30;CoefficientList[Series[(1-x^3)/(1-3x+2x^4),{x,0,nn}],x]  (* Geoffrey Critzer, Oct 30 2012 *)
    LinearRecurrence[{2, 2, 2}, {1, 3, 9}, 30] (* Jean-François Alcover, Dec 25 2015 *)
  • Maxima
    a(n):=sum(sum(binomial(k-1,m-1)*sum(binomial(j,n-3*k+2*j)*binomial(k,j),j,0,k),k,m,n),m,1,n); /* Vladimir Kruchinin, Apr 25 2011 */

Formula

G.f.: (1+z+z^2)/(1-2*z-2*z^2-2*z^3).
a(n-1) = Sum_{m=1..n} Sum_{k=m..n} C(k-1, m-1) * Sum_{j=0..k} C(j, n-3*k+2*j) * C(k, j). - Vladimir Kruchinin, Apr 25 2011
G.f. for sequence with 1 prepended: 1/( 1 - Sum_{k>=1} (x+x^2+x^3)^k). - Joerg Arndt, Sep 30 2012 [This g.f. is then (1 - x - x^2 - x^3)/(1 - 2*x - 2*x^2 - 2*x^3); see the above given INVERT comment. - Wolfdieter Lang, Dec 08 2020]
a(n) = round((3/2)*((r+s+2)/3)^(n+3)/(r^2+s^2+10)), where r=(53+3*sqrt(201))^(1/3), s=(53-3*sqrt(201))^(1/3); r and s are the real roots of the polynomial x^6 - 106*x^3 + 1000. - Anton Nikonov, Jul 11 2013
a(n) = A077835(n) + A077835(n-1) + A077835(n-2). - R. J. Mathar, Aug 07 2015

A119442 Triangle read by rows: row n lists number of unordered partitions of n into k parts which are partition numbers (members of A000041).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 7, 2, 1, 7, 11, 7, 2, 1, 11, 26, 19, 7, 2, 1, 15, 40, 38, 19, 7, 2, 1, 22, 83, 78, 54, 19, 7, 2, 1, 30, 120, 168, 102, 54, 19, 7, 2, 1, 42, 223, 301, 244, 134, 54, 19, 7, 2, 1, 56, 320, 557, 471, 292, 134, 54, 19, 7, 2, 1, 77, 566, 1035, 1000, 623, 356, 134, 54
Offset: 0

Views

Author

Alford Arnold, May 19 2006

Keywords

Comments

A060642 describes the ordered case.
Number of twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. - Gus Wiseman, Mar 23 2018

Examples

			Triangle begins:
   1
   2   1
   3   2   1
   5   7   2   1
   7  11   7   2   1
  11  26  19   7   2   1
  15  40  38  19   7   2   1
  22  83  78  54  19   7   2   1
  30 120 168 102  54  19   7   2   1
  42 223 301 244 134  54  19   7   2   1
  56 320 557 471 292 134  54  19   7   2   1
The T(5,3) = 7 twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(2)(1), (11)(11)(1). - _Gus Wiseman_, Mar 23 2018
		

Crossrefs

Programs

  • Mathematica
    nn=12;
    ser=Product[1/(1-PartitionsP[n]x^n y),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n},{y,0,k}],{n,nn},{k,n}] (* Gus Wiseman, Mar 23 2018 *)

Formula

G.f.: 1/Product_{k>0} (1-y*A000041(k)*x^k). - Vladeta Jovovic, May 21 2006

Extensions

More terms and better definition from Vladeta Jovovic, May 21 2006

A127743 Triangular array where T(n,k) is the number of set partitions of n with k atomic parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 22, 16, 9, 4, 1, 92, 60, 31, 14, 5, 1, 426, 252, 120, 52, 20, 6, 1, 2146, 1160, 510, 209, 80, 27, 7, 1, 11624, 5776, 2348, 904, 335, 116, 35, 8, 1, 67146, 30832, 11610, 4184, 1481, 507, 161, 44, 9, 1
Offset: 1

Views

Author

Alford Arnold, Feb 24 2007

Keywords

Comments

Triangular array distributing the Bell numbers (A000110). The value associated with each partition is the product of A074664(k) for each part of size k, times the number of compositions associated with the partition (A048996 & A072881). The value for T(n,k) is the total of these values for each partition of n into k parts.
Calculating the appropriate weights can be done by "working backward". Suppose for example we know the weights for 1 through 6 and desire the weight for the partitions of seven: Substitute the weights for each partition value and multiply. For example, 7 = 4+3 so f([4,3]) = 6*2 = 12; adjusting for the number of permutations of [4,3] we now have 2*12 = 24. Continuing in this manner for each partition of seven and summing to 451 we now know all of the values except that associated with the partition [7] which must be 877 - 451 = 426.
From Mike Zabrocki: (Start)
Every set partition can be uniquely split into "atomic" set partitions or is itself already atomic.
{{1},{2},{3}} = {{1}}|{{1}}|{{1}}
{{1},{23}} = {{1}}|{{12}}
{{12},{3}} = {{12}}|{{1}}
{{13},{2}} is already atomic
{{123}} is already atomic
where this operation | is defined as {A1,...,Ar}|{B1,...,Bs} = {A1,...,Ar,B1+n,...,Bs+n}
where Bi+n = {bi1+n,bi2+n,...,bik+n} if Bi = {bi1,bi2,...,bik} and n = |A1|+|A2|+...+|Ar|. (End)
Subtriangle (n >= 1 and 1 <= k <= n) of triangle given by [0,1,1,2,1,3,1,4,1,5,1,6,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 03 2007
From Peter Bala, Aug 05 2014: (Start)
Let B(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + ... denote the o.g.f. for the Bell numbers A000110. Let f(x) = (B(x) - 1)/(x*B(x)) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for the first column of this array. Then this array appears to be the Riordan array (f(x), x*f(x)).
If true, this gives the o.g.f. of the array as (B(x) - 1)/( x*(t + (1 - t)*B(x)) ) = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ... and also the hockey-stick recurrence: T(n+1,k+1) = T(n,k) + T(n-1,k) + 2*T(n-2,k) + 6*T(n-3,k) + 22*T(n-4,k) + ..., n,k >= 1. (End)

Examples

			The partitions of 4 are
  4 31 22 211 1111
and the products are
  1*6 2*2 1*1 3*1 1*1
therefore row 4 of the table is
  6 5 3 1.
From _Philippe Deléham_, Aug 03 2007: (Start)
Triangle begins:
     1;
     1,    1;
     2,    2,   1;
     6,    5,   3,   1;
    22,   16,   9,   4,  1;
    92,   60,  31,  14,  5,  1;
   426,  252, 120,  52, 20,  6, 1;
  2146, 1160, 510, 209, 80, 27, 7, 1; ...
Triangle [0,1,1,2,1,3,1,4,1,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,    1;
  0,    1,    1;
  0,    2,    2,   1;
  0,    6,    5,   3,   1;
  0,   22,   16,   9,   4,  1;
  0,   92,   60,  31,  14,  5,  1;
  0,  426,  252, 120,  52, 20,  6, 1;
  0, 2146, 1160, 510, 209, 80, 27, 7, 1; ...
(End)
		

Crossrefs

Cf. A000041, A000110 (row sums), A074664 (1st column), A048996, A072881, A036043, A036042, A084938.

Programs

  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Sum[T[k+i, k]*Binomial[n-m-k-1, n-m-k-i], {i, 1, n-m-k}]*Binomial[k+m-1, k], {k, 1, n-m}] + Binomial[n-1, n-m]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 23 2015, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=sum((sum(T(k+i,k)*binomial(n-m-k-1,n-m-k-i),i,1,n-m-k))*binomial(k+m-1,k),k,1,n-m)+binomial(n-1,n-m); /* Vladimir Kruchinin, Mar 21 2015 */
    
  • PARI
    {T(n,m) = sum(k=1,n-m, (sum(i=1, n-m-k, (T(k+i, k)*binomial(n-m-k-1, n-m-k-i))*binomial(k+m-1, k)))) + binomial(n-1, n-m)};
    for(n=1, 10, for(m=1, n, print1(T(n,m), ", "))) \\ G. C. Greubel, Dec 06 2018

Formula

T(n, m) = Sum_{k=1..n-m}( Sum_{i=1..n-m-k}(T(k+i, k)*C(n-m-k-1, n-m-k-i))*C(k+m-1, k) ) + C(n-1, n-m). - Vladimir Kruchinin, Mar 21 2015

Extensions

Edited by Franklin T. Adams-Watters, Jan 25 2010

A134286 Characteristic sequence for sequence A026905.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

This partition array is the member k=1 in the family M_0(k), with M_0(2)=M_0= A048996, M_0(3)= A134283, etc.
When read as partition array (tabf with sequence of row lengths given by the partition numbers A000041) in Abramowitz-Stegun order (see A117506 for the reference) a(n,k) is the characteristic partition array for the partition (1^n) of n.

Programs

  • Mathematica
    terms = 105; nmax = 10;
    pp = PartitionsP[Range[nmax]] // Accumulate;
    a[n_] := If[n > pp[[-1]], Print["nmax = ", nmax, " too small"], Boole[ MemberQ[ pp, n]]];
    Array[a, terms] (* Jean-François Alcover, Jun 19 2019 *)

Formula

a(n)=1 if n from A026905, else 0.

A341418 Triangle read by rows: T(n, m) gives the sum of the weights of weighted compositions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 3, 1, -1, 0, 3, 4, 1, 0, -2, 1, 6, 5, 1, -1, -2, -3, 4, 10, 6, 1, 0, -2, -6, -3, 10, 15, 7, 1, 0, -2, -6, -12, 0, 20, 21, 8, 1, 0, 1, -6, -16, -19, 9, 35, 28, 9, 1, 0, 0, 0, -16, -35, -24, 28, 56, 36, 10, 1, 1, 2, 3, -6, -40, -65, -21, 62, 84, 45, 11, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2021

Keywords

Comments

The sums of row n are given in A000041(n), for n >= 1 (number of partitions).
A differently signed triangle is A047265.
One could add a column m = 0 starting at n = 0 with T(0, 0) = 1 and T(n, 0) = 0 otherwise, by including the empty partition with no parts.
For the weights w of positive integer numbers n see a comment in A339885. It is w(n) = -A010815(n), for n >= 0. Also w(n) = A257628(n), for n >= 1.
The weight of a composition is the one of the respective partition, obtained by the product of the weights of the parts.
That the row sums give the number of partitions follows from the pentagonal number theorem. See also the Apr 04 2013 conjecture in A000041 by Gary W. Adamson, and the hint for the proof by Joerg Arndt. The INVERT map of A = {1, 1, 0, 0, -5, -7, ...}, with offset 1, gives the A000041(n) numbers, for n >= 0.
If the above mentioned column for m = 0, starting at n = 0 is added this is an ordinary convolution triangle of the Riordan type R(1, f(x)), with f(x) = -(Product_{j>=1} (1 - x^j) - 1), generating {A257628(n)}{n>=0}. See the formulae below. - _Wolfdieter Lang, Feb 16 2021

Examples

			The triangle T(n, m) begins:
  n\m   1  2  3   4   5   6   7  8  9 10 11 12 ... A000041
  --------------------------------------------------------
  1:    1                                                1
  2:    1  1                                             2
  3:    0  2  1                                          3
  4:    0  1  3   1                                      5
  5:   -1  0  3   4   1                                  7
  6:    0 -2  1   6   5   1                             11
  7:   -1 -2 -3   4  10   6   1                         15
  8:    0 -2 -6  -3  10  15   7  1                      22
  9:    0 -2 -6 -12   0  20  21  8  1                   30
  10:   0  1 -6 -16 -19   9  35 28  9  1                42
  11:   0  0  0 -16 -35 -24  28 56 36 10  1             56
  12:   1  2  3  -6 -40 -65 -21 62 84 45 11  1          77
  ...
For instance the case n = 6: The relevant weighted partitions with parts from the pentagonal numbers and number of compositions are: m = 2: 2*(1,-5) = -2*(1,5), m = 3: 1*(2^3), m = 4: 3*(1^2,2^2), m = 5: 1*(1^4,2), m = 6: 1*(1^6). The other partitions have weight 0.
		

Crossrefs

Cf. A000041, A008284, A010815, A047265, A257628, -A307059 (alternating row sums), A339885 (for partitions).

Programs

  • Maple
    # Using function PMatrix from A357368. Adds a row and a column for n, m = 0.
    PMatrix(14, proc(n) 24*n+1; if issqr(%) then sqrt(%); -(-1)^irem(iquo(%+irem(%,6),6),2) else 0 fi end); # Peter Luschny, Oct 06 2022
  • Mathematica
    nmax = 12;
    col[m_] := col[m] = (-(Product[(1-x^j), {j, 1, nmax}]-1))^m // CoefficientList[#, x]&;
    T[n_, m_] := col[m][[n+1]];
    Table[T[n, m], {n, 1, nmax}, {m, 1, n}] // Flatten (* Jean-François Alcover, Oct 23 2023 *)

Formula

T(n, m) = Sum_{j=1..p(n,m)} w(Part(n, m, j))*M0(n, m, j), where p(n, m) = A008284(n, m), M0(n, m, j) are the multinomials from A048996, i.e., m!/Prod_{k=1..m} e(n,m,j,k)! with the exponents of the parts, and the ternary weight of the j-th partition of n with m parts Part(n,m,j), in Abramowitz-Stegun order, is defined as the product of the weights of the parts, using w(n) = -A010815(n), for n >= 1, and m = 1, 2, ..., n.
From Wolfdieter Lang, Feb 16 2021: (Start)
G.f. column m: G(m, x) = ( -(Product_{j>=1} (1 - x^j) - 1) )^m, for m >= 1.
G.f. of row polynomials R(n, x) = Sum_{m=1..n}, that is g. f. of the triangle:
GfT(z, x) = 1/(1 - x*G(1, z)) - 1. Riordan triangle (without m = 0 column). (End)

A134283 A certain partition array in Abramowitz-Stegun (A-St)order, called M_0(3).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 35, 20, 9, 9, 1, 126, 70, 60, 30, 27, 12, 1, 462, 252, 210, 100, 105, 180, 27, 40, 54, 15, 1, 1716, 924, 756, 700, 378, 630, 300, 270, 140, 360, 108, 50, 90, 18, 1, 6435, 3432, 2772, 2520, 1225, 1386, 2268, 2100, 945, 900, 504, 1260, 600, 1080, 81
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_0(3); the k=3 member in the family of a generalization of the multinomial number arrays M_0 = M_0(2) = A048996.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
The s2(3,n,m):=A035324(n,m) numbers (generalized Pascal triangle) are obtained by summing in row n all numbers with the same part number m. In the same manner the s2(2,n,m) = binomial(n-1,m-1) = A007318(n-1,m-1) numbers are obtained from the partition array M_0 = A048996.

Examples

			[1]; [3,1]; [10,6,1]; [35,20,9,9,1]; [126,70,60,30,27,12,1]; ...
		

Crossrefs

Cf. A049027 (row sums, also of triangle A035324).

Formula

a(n,k) = m!*Product_{j=1..n} (s2(3,j,1)^e(n,k,j))/e(n,k,j)! with s2(3,n,1) = A035324(n,1) = A001700(n-1) and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1.

A157161 Formal infinite product representation for the Catalan numbers (A000108) o.g.f. series.

Original entry on oeis.org

1, 2, 3, 11, 25, 79, 245, 869, 2692, 9544, 32065, 115381, 400023, 1462730, 5165327, 19165035, 68635477, 255546242, 930138521, 3491772737, 12810761323, 48334512920, 178987624513, 678272753284, 2528210175630, 9616904064021, 36047930953482, 137654448221760, 518401146543811
Offset: 1

Views

Author

Wolfdieter Lang Aug 10 2009

Keywords

Comments

(1-sqrt(1-4*x))/(2*x) = Sum_{k>=0} C(k)*x^k with C(n)=A000108(n) written as formal Product_{n>=1} (1 + a(n)*x^n).

Examples

			Recurrence I: a(4) = C(4) - a(1)*a(3) = 14 - 1*3 = 11.
Recurrence II: a(4)= 2*(-1)^2 + (1*C(4)-(1/2)*(2*C(1)*C(3) + 1*C(2)^2) + (1/3)*3*C(1)^2*C(2)) = 2 + (14 - (10+4)/2 + 2) = 11.
Recurrence II (rewritten): a(4)= (1/4)*(-a(1))^4 + (1/2)*(-a(2))^2 + 7!/4!^2 = 11.
		

Crossrefs

Cf. A147542 (for Fibonacci numbers).

Formula

Product_{n>=1} (1 + a(n)*x^n) = Sum_{k>=1} C(k)*x^k = (1-sqrt(1-4*x))/(2*x), with C(n)= A000108(n) (Catalan numbers).
Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)):
a(n)= C(n) - sum(sum(product(a(k[j]),j=1..m), fp from FP(n,m)), m=2..maxm(n)), with maxm(n):=A003056(n) and the distinct parts k[j], j=1,...,m, of the partition fp of n, n>=3. Inputs a(1)=C(1)=1, a(2)=C(2)=2. See the array A008289(n,m) for the cardinality of the set FP(n,m).
Recurrence II: With P(n,m) the set of all partitions of n with m parts, and the multinomial numbers M0 (given for every partition under A048996):
a(n) = sum((d/n)*(-a(d)^(n/d)),d|n with 1=2; a(1)=C(1)=1. The exponents e(j)>=0 satisfy sum(j*e(j),j=1..n)=n and sum(e(j),j=1..m). If e_j=0 then part j does not appear. The M0 numbers are m!/product(e(j)!,j=1..n).
Recurrence II (rewritten, thanks to email from V. Jovovic, Mar 10 2009):
a(n)= (sum((d/n)*(-a(d))^(n/d),d|n with 1<=d=2; a(1)=1. Note that n*(2*n-1)!/n!^2 = A001700(n-1)= A088218(n), n>=1, with o.g.f. (d/dx)log(c(x)), where c(x) is the o.g.f. for Catalan numbers A000108. Here no partitions are needed.

A264753 Irregular triangle read by rows: T(n,k) = A127671(n,k)/A036040(n,k), n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, 1, -1, 1, -1, 2, 1, -1, -1, 2, -6, 1, -1, -1, 2, 2, -6, 24, 1, -1, -1, -1, 2, 2, 2, -6, -6, 24, -120, 1, -1, -1, -1, 2, 2, 2, 2, -6, -6, -6, 24, 24, -120, 720, 1, -1, -1, -1, -1, 2, 2, 2, 2, 2, -6, -6, -6, -6, -6, 24, 24, 24, -120, -120, 720, -5040
Offset: 1

Views

Author

Johannes W. Meijer, Jul 12 2016

Keywords

Comments

This sequence connects the multinomial coefficients A036040 (M_3) with A127671 (M_5).
The numbers of terms in n-th row is the number of partitions A000041(n). The number of terms T(n, k) with equal values in the n-th row follow the rhythm of A008284(n).
Some row sums are [1, 0, 2, -5, 21, -104, 636, -4511, 36455, -330954, 3334390, -36914039].

Examples

			The first few rows of the T(n,k) triangle:
n = 1: 1
n = 2: 1, -1
n = 3: 1, -1, 2
n = 4: 1, -1, -1, 2, -6
n = 5: 1, -1, -1, 2, 2, -6, 24
n = 6: 1, -1, -1, -1, 2, 2, 2, -6, -6, 24, -120
n = 7: 1, -1, -1, -1, 2, 2, 2, 2, -6, -6, -6, 24, 24, -120, 720
		

Crossrefs

Cf. A036040 (M_3), A127671 (M_5), A000041, A008284, A081362.
Cf. A048996 (M_0), A036038 (M_1), A036039 (M_2), A117506 (M_4).

Programs

  • Maple
    nmax:=8: with(combinat): A008284 := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = 0 then if n = 0 then 1 else 0 fi else A008284(n-1, k-1) + A008284(n-k, k) fi end: for n from 1 to nmax do p:=0: k:=1: while k < numbpart(n)+1 do p := p+1: k1 := A008284(n, p): while k1 > 0 do A264753(n, k) := (-1)^(p+1)*(p-1)!: k := k+1: k1 := k1-1: od: od: od: seq(seq(A264753(n, k), k = 1..numbpart(n)), n = 1..nmax);
  • Mathematica
    nMax = 8; A008284[n_, k_] := A008284[n, k] = If[k<0 || n<0, 0, If[k == 0, If[n == 0, 1, 0], A008284[n-1, k-1] + A008284[n-k, k]]]; For[n = 1, n <= nMax, n++, p = 0; k = 1; While[k < PartitionsP[n]+1, p = p+1; k1 = A008284[n, p]; While[k1>0, A264753[n, k] = (-1)^(p+1)*(p-1)!; k = k+1; k1 = k1-1]]]; Table[Table[A264753[n, k], {k, 1, PartitionsP[n]}], {n, 1, nMax}] // Flatten (* Jean-François Alcover, Oct 01 2016, translated from Maple *)

Formula

T(n, k) = A127671(n, k)/A036040(n, k), n >= 1 and 1 <= k <= A000041(n).

A134284 A certain partition array in Abramowitz-Stegun order (A-St order), called M_0(3)/M_0.

Original entry on oeis.org

1, 3, 1, 10, 3, 1, 35, 10, 9, 3, 1, 126, 35, 30, 10, 9, 3, 1, 462, 126, 105, 100, 35, 30, 27, 10, 9, 3, 1, 1716, 462, 378, 350, 126, 105, 100, 90, 35, 30, 27, 10, 9, 3, 1, 6435, 1716, 1386, 1260, 1225, 462, 378, 350, 315, 300, 126, 105, 100, 90, 81, 35, 30, 27, 10, 9, 3, 1
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_0(3)= A134283 with each entry divided by the corresponding one of the partition number array M_0 = M_0(2) = A048996; in short M_0(3)/M_0.

Examples

			[1]; [3,1]; [10,3,1]; [35,10,9,3,1]; [126,35,30,10,9,3,1]; ...
a(4,3) = 9 = 3^2 because (2^2) is the k=4 partition of n=4 in A-St order and s2(3,2,1)=3.
		

Crossrefs

Cf. A134826 (row sums coinciding with those of triangle A134285).

Formula

a(n,k) = Product_{j=1..n} s2(3,j,1)^e(n,k,j) with s2(3,n,1) = A035324(n,1) = A001700(n-1) = binomial(2*n-1,n) and with the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
a(n,k) = A134283(n,k)/A048996(n,k) (division of partition arrays M_0(3) by M_0).
Previous Showing 21-30 of 36 results. Next