cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 265 results. Next

A039703 a(n) = n-th prime modulo 5.

Original entry on oeis.org

2, 3, 0, 2, 1, 3, 2, 4, 3, 4, 1, 2, 1, 3, 2, 3, 4, 1, 2, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 3, 2, 1, 2, 4, 4, 1, 2, 3, 2, 3, 4, 1, 1, 3, 2, 4, 1, 3, 2, 4, 3, 4, 1, 1, 2, 3, 4, 1, 2, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 4, 3, 4, 2, 3, 4, 3, 4, 2, 1, 4, 4, 1, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 2, 1, 4, 3, 4, 1, 3, 1, 2, 2, 3, 4, 1
Offset: 1

Views

Author

Keywords

Comments

a(A049084(A045356(n-1))) = even; a(A049084(A045429(n-1))) = odd. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (5/2)*n. - Amiram Eldar, Dec 11 2024

A066246 a(n) = 0 unless n is a composite number A002808(k) then a(n) = k.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 4, 5, 0, 6, 0, 7, 8, 9, 0, 10, 0, 11, 12, 13, 0, 14, 15, 16, 17, 18, 0, 19, 0, 20, 21, 22, 23, 24, 0, 25, 26, 27, 0, 28, 0, 29, 30, 31, 0, 32, 33, 34, 35, 36, 0, 37, 38, 39, 40, 41, 0, 42, 0, 43, 44, 45, 46, 47, 0, 48, 49, 50, 0, 51, 0, 52, 53, 54, 55, 56, 0, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2001

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr, genericIndex)
    a066246 n = genericIndex a066246_list (n - 1)
    a066246_list = unfoldr x (1, 1, a002808_list) where
       x (i, z, cs'@(c:cs)) | i == c = Just (z, (i + 1, z + 1, cs))
                            | i /= c = Just (0, (i + 1, z, cs'))
    -- Reinhard Zumkeller, Jan 29 2014
  • Mathematica
    Module[{k=1},Table[If[CompositeQ[n],k;k++,0],{n,100}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    a(n)=if(isprime(n),0,max(0,n-primepi(n)-1)) \\ Charles R Greathouse IV, Aug 21 2011
    

Formula

a(n) = A239968(n) + A010051(n) - 1. - Reinhard Zumkeller, Mar 30 2014
a(n) = A065855(n)*A005171(n). - Ridouane Oudra, Jul 29 2025

A241917 If n is a prime with index i, p_i, a(n) = i, (with a(1)=0), otherwise difference (i-j) of the indices of the two largest primes p_i, p_j, i >= j in the prime factorization of n: a(n) = A061395(n) - A061395(A052126(n)).

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 0, 0, 2, 5, 1, 6, 3, 1, 0, 7, 0, 8, 2, 2, 4, 9, 1, 0, 5, 0, 3, 10, 1, 11, 0, 3, 6, 1, 0, 12, 7, 4, 2, 13, 2, 14, 4, 1, 8, 15, 1, 0, 0, 5, 5, 16, 0, 2, 3, 6, 9, 17, 1, 18, 10, 2, 0, 3, 3, 19, 6, 7, 1, 20, 0, 21, 11, 0, 7, 1, 4, 22, 2, 0, 12, 23
Offset: 1

Views

Author

Antti Karttunen, May 13 2014

Keywords

Comments

Note: the two largest primes in the multiset of prime divisors of n are equal for all numbers that are in A070003, thus, after a(1)=0, A070003 gives the positions of the other zeros in this sequence.

Crossrefs

Cf. A241919, A242411, A243055 for other variants.

Programs

  • Haskell
    a241917 n = i - j where
                (i:j:_) = map a049084 $ reverse (1 : a027746_row n)
    -- Reinhard Zumkeller, May 15 2014
    
  • PARI
    A241917(n) = if(isprime(n), primepi(n), if(1>=omega(n), 0, my(f=factor(n)); if(f[#f~,2]>1, 0, primepi(f[#f~,1])-primepi(f[(#f~)-1,1])))); \\ Antti Karttunen, Jul 10 2024
  • Python
    from sympy import primefactors, primepi
    def a061395(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    def a052126(n): return 1 if n==1 else n/primefactors(n)[-1]
    def a(n): return 0 if n==1 else a061395(n) - a061395(a052126(n)) # Indranil Ghosh, May 19 2017
    
  • Scheme
    (define (A241917 n) (- (A061395 n) (A061395 (A052126 n))))
    

Formula

a(n) = A061395(n) - A061395(A052126(n)).

A065381 Primes not of the form p + 2^k, p prime and k >= 0.

Original entry on oeis.org

2, 127, 149, 251, 331, 337, 373, 509, 599, 701, 757, 809, 877, 907, 977, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2203, 2213, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 03 2001

Keywords

Comments

Sequence is infinite. For example, Pollack shows that numbers which are 1260327937 mod 2863311360 are not of the form p + 2^k for any prime p and k >= 0, and there are infinitely many primes in this congruence class by Dirichlet's theorem. - Charles R Greathouse IV, Jul 20 2014

Examples

			127 is a prime, 127-2^0 through 127-2^6 are all nonprimes.
		

Crossrefs

Programs

  • Haskell
    a065381 n = a065381_list !! (n-1)
    a065381_list = filter f a000040_list where
       f p = all ((== 0) . a010051 . (p -)) $ takeWhile (<= p) a000079_list
    -- Reinhard Zumkeller, Nov 24 2011
    
  • Mathematica
    fQ[n_] := Block[{k = Floor[Log[2, n]], p = n}, While[k > -1 && ! PrimeQ[p - 2^k], k--]; If[k > 0, True, False]]; Drop[Select[Prime[Range[536]], ! fQ[#] &], {2}] (* Robert G. Wilson v, Feb 10 2005; corrected by Arkadiusz Wesolowski, May 05 2012 *)
  • PARI
    is(p)=my(k=1);while(kp,return(isprime(p)));0 \\ Charles R Greathouse IV, Jul 20 2014

Formula

A078687(A049084(a(n))) = 0; subsequence of A118958. - Reinhard Zumkeller, May 07 2006

Extensions

Link and cross-reference fixed by Charles R Greathouse IV, Nov 09 2008

A251239 Indices of prime numbers in A098550.

Original entry on oeis.org

2, 3, 9, 15, 22, 23, 30, 43, 51, 61, 62, 79, 87, 88, 101, 114, 127, 132, 142, 153, 158, 167, 175, 194, 204, 215, 222, 233, 238, 247, 274, 283, 296, 301, 324, 329, 338, 355, 364, 375, 386, 393, 414, 423, 430, 435, 452, 479, 490, 497, 506, 523, 528, 541, 550
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 02 2014

Keywords

Comments

It is conjectured that every prime appears in A098550, and if so then A098550(a(n)) = A000040(n). [Comment edited by N. J. A. Sloane, Dec 15 2014] [It is now known that every prime appears in A098550, although it is not known that they appear in their right order. - N. J. A. Sloane, Dec 25 2014]
A010051(A098550(a(n))) = 1; A049084(A098550(a(n))) > 0.
Conjecture: a(n) = A251541(n) + 2 for n > 4. - Reinhard Zumkeller, Dec 16 2014
A253049(n) = A098550(a(n)+1). - Reinhard Zumkeller, Dec 29 2014

Crossrefs

This is a subsequence of A251391 and A251241,

Programs

  • Haskell
    a251239 n = a251239_list !! (n-1)
    a251239_list = filter ((== 1) . a010051' . a098550) [1..]
  • Mathematica
    a098550[lst_List] :=
    Block[{k = 4},
      While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 ||
        MemberQ[lst, k], k++]; Append[lst, k]];
    a251239[n_] :=
    Flatten@Position[Nest[a098550, {1, 2, 3}, n], Integer?PrimeQ]; a251239[550] (* _Michael De Vlieger, Dec 23 2014, based on Robert G. Wilson v at A098550 *)

A276079 Numbers n such that prime(k)^(k+1) divides n for some k.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{i>=1} 1-prime(i)^(-1-i) = 0.2789766... - Amiram Eldar, Oct 21 2020

Examples

			625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
		

Crossrefs

Positions of nonzeros in A276077.
Complement: A276078.
Cf. A000040, A000720, A008586 (a subsequence).
Differs from its subsequence A100716 for the first time at n=175, where a(175) = 625, while that value is missing from A100716.

Programs

  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a028234(n):
        f=factorint(n)
        minf = min(f)
        return 1 if n==1 else n//(minf**f[minf])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a049084(n): return primepi(n) if isprime(n) else 0
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0)
    print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017

A028416 Primes p such that the decimal expansion of 1/p has a periodic part of even length.

Original entry on oeis.org

7, 11, 13, 17, 19, 23, 29, 47, 59, 61, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 193, 197, 211, 223, 229, 233, 241, 251, 257, 263, 269, 281, 293, 313, 331, 337, 349, 353, 367, 373, 379, 383, 389, 401, 409, 419, 421, 433
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Comments

Primes whose reciprocals have even period length.
Primes p such that the order of 10 mod p is even. - Joerg Arndt, Mar 04 2014
A002371(A049084(a(n))) mod 2 == 0.
Not the same as A040121: a(33)=241 is not in A040121.
Let (d(i): 1<=i<=2*K) be the period of the decimal expansion of 1/a(n), K=A002371(A049084(a(n)))/2, then d(i) + d(i+K) = 9 for i with 1<=i<=K, or, equivalently: u + v = 10^K - 1 with u = Sum_{i=1..K} d(i)*10^(K-i) and v = Sum_{i=1..K} d(i+K)*10^(K-i). - Reinhard Zumkeller, Oct 05 2008

Examples

			From _Reinhard Zumkeller_, Oct 05 2008: (Start)
(0,5,8,8,2,3,5,2,9,4,1,1,7,6,4,7) is the period of 1/17 (see A007450),
K = A002371(A049084(17))/2 = A002371(7)/2 = 16/2 = 8,
u = 5882352, v = 94117647: u + v = 99999999 = 10^8 - 1. (End)
		

References

  • H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, "Die periodischen Dezimalbrueche". [Reinhard Zumkeller, Oct 05 2008]

Crossrefs

Programs

  • Maple
    A028416 := proc(n) local st:
    st := ithprime(n):
    if (modp(numtheory[order](10,st),2) = 0) then
       RETURN(st)
    fi: end:  seq(A028416(n), n=1..100); # Jani Melik, Feb 24 2011
  • Mathematica
    Select[Prime[Range[4,100]],EvenQ[Length[RealDigits[1/#][[1,1]]]]&] (* Harvey P. Dale, Jul 07 2011 *)
  • PARI
    forprime(p=7,1e3,if(znorder(Mod(10,p))%2==0,print1(p", "))) \\ Charles R Greathouse IV, Feb 24 2011
    
  • Python
    from sympy import gcd, isprime, n_order
    is_A028416 = lambda n: gcd(n,10)==1 and n>5 and n_order(10, n)%2==0 and isprime(n) # M. F. Hasler, Nov 19 2024

Extensions

More terms from Reinhard Zumkeller, Jul 29 2003

A081092 Primes having a prime number of 1's in their binary representation.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 47, 59, 61, 67, 73, 79, 97, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2003

Keywords

Comments

Same as primes with prime binary digit sum.
Primes with prime decimal digit sum are A046704.
Sum_{a(n) < x} 1/a(n) is asymptotic to log(log(log(x))) as x -> infinity; see Harman (2012). Thus the sequence is infinite. - Jonathan Sondow, Jun 09 2012
A049084(A000120(a(n))) > 0; A081091, A000215 and A081093 are subsequences.

Examples

			15th prime = 47 = '101111' with five 1's, therefore 47 is in the sequence.
		

Crossrefs

Subsequence of A052294.

Programs

  • Haskell
    a081092 n = a081092_list !! (n-1)
    a081092_list = filter ((== 1) . a010051') a052294_list
    -- Reinhard Zumkeller, Nov 16 2012
    
  • Maple
    q:= n-> isprime(n) and isprime(add(i,i=Bits[Split](n))):
    select(q, [$1..500])[];  # Alois P. Heinz, Sep 28 2023
  • Mathematica
    Clear[BinSumOddQ];BinSumPrimeQ[a_]:=Module[{i,s=0},s=0;For[i=1,i<=Length[IntegerDigits[a,2]],s+=Extract[IntegerDigits[a,2],i];i++ ];PrimeQ[s]]; lst={};Do[p=Prime[n];If[BinSumPrimeQ[p],AppendTo[lst,p]],{n,4!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 06 2009 *)
    Select[Prime[Range[100]], PrimeQ[Apply[Plus, IntegerDigits[#, 2]]] &] (* Jonathan Sondow, Jun 09 2012 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(hammingweight(p)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2015
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(n.bit_count()) and isprime(n)
    print([k for k in range(444) if ok(k)]) # Michael S. Branicky, Dec 27 2023

A107740 Number of numbers m such that prime(n) = m + (digit sum of m).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

a(A049084(A006378(n))) = 0; a(A049084(A048521(n))) > 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]
a(n) <= 2 for n <= 10^5. Conjecture: sequence is bounded.
I would rather conjecture the opposite. Of course a(n) >= m implies n >= A006064(m), having more than A230857(m) digits, i.e., 14, 25 and 1111111111125 digits of n, for a(n) = 3, 4, 5. - M. F. Hasler, Nov 09 2018

Examples

			A000040(26) = 101 = 91 + (9 + 1) = 100 + (1 + 0 + 0): a(26) = # {91, 100} = 2.
		

Crossrefs

Programs

  • Haskell
    a107740 n = length [() | let p = a000040 n,
                             m <- [max 0 (p - 9 * a055642 p) .. p - 1],
                             a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    Table[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
  • PARI
    apply( A107740(n)=A230093(prime(n)), [1..150]) \\ M. F. Hasler, Nov 08 2018

Formula

a(n) = A230093(prime(n)), i.e.: A107740 = A230093 o A000040. - M. F. Hasler, Nov 08 2018

A108548 Fully multiplicative with a(prime(j)) = A108546(j), where A108546 is the lexicographically earliest permutation of primes such that after 2 the forms 4*k+1 and 4*k+3 alternate, and prime(j) is the j-th prime in A000040.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14, 15, 16, 17, 18, 19, 20, 21, 26, 29, 24, 25, 22, 27, 28, 23, 30, 37, 32, 39, 34, 35, 36, 31, 38, 33, 40, 41, 42, 43, 52, 45, 58, 53, 48, 49, 50, 51, 44, 47, 54, 65, 56, 57, 46, 61, 60, 59, 74, 63, 64, 55, 78, 73, 68, 87, 70, 67, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2005

Keywords

Comments

Multiplicative with a(2^e) = 2^e, else if p is the m-th prime then a(p^e) = q^e where q is the m/2-th prime of the form 4*k + 3 (A002145) for even m and a(p^e) = r^e where r is the (m-1)/2-th prime of the form 4*k + 1 (A002144) for odd m. - David A. Corneth, Apr 25 2022
Permutation of the natural numbers with fixed points A108549: a(A108549(n)) = A108549(n).

Crossrefs

Cf. A002144, A002145, A049084, A108546, A108549 (fixed points), A332808 (inverse permutation).
Cf. also A332815, A332817 (this permutation applied to Doudna tree and its mirror image), also A332818, A332819.
Cf. also A267099, A332212 and A348746 for other similar mappings.

Programs

  • Mathematica
    terms = 72;
    A111745 = Module[{prs = Prime[Range[2 terms]], m3, m1, min},
         m3 = Select[prs, Mod[#, 4] == 3&];
         m1 = Select[prs, Mod[#, 4] == 1&];
         min = Min[Length[m1], Length[m3]];
         Riffle[Take[m3, min], Take[m1, min]]];
    A108546[n_] := If[n == 1, 2, A111745[[n - 1]]];
    A049084[n_] := PrimePi[n]*Boole[PrimeQ[n]];
    a[n_] := If[n == 1, 1, Module[{p, e}, Product[{p, e} = pe; A108546[A049084[p]]^e, {pe, FactorInteger[n]}]]];
    Array[a, terms] (* Jean-François Alcover, Nov 19 2021, using Harvey P. Dale's code for A111745 *)
  • PARI
    up_to = 26927; \\ One of the prime fixed points.
    A108546list(up_to) = { my(v=vector(up_to), p,q); v[1] = 2; v[2] = 3; v[3] = 5; for(n=4,up_to, p = v[n-2]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[n] = q); (v); };
    v108546 = A108546list(up_to);
    A108546(n) = v108546[n];
    A108548(n) = { my(f=factor(n)); f[,1] = apply(A108546,apply(primepi,f[,1])); factorback(f); }; \\ Antti Karttunen, Apr 25 2022

Extensions

Name edited by Antti Karttunen, Apr 25 2022
Previous Showing 61-70 of 265 results. Next