cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A373197 Sum of all squarefree numbers from prime(n) to prime(n+1) - 1.

Original entry on oeis.org

2, 3, 11, 17, 11, 42, 17, 62, 49, 59, 133, 114, 83, 89, 98, 223, 59, 254, 206, 71, 302, 161, 341, 462, 97, 203, 314, 107, 330, 824, 386, 398, 275, 856, 149, 460, 635, 494, 337, 702, 179, 1294, 191, 582, 197, 1635, 1950, 449, 227, 690, 943, 239, 983, 1013, 1036
Offset: 1

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			This is the sequence of row sums of A005117 treated as a triangle with row-lengths A373198:
   2
   3
   5   6
   7  10
  11
  13  14  15
  17
  19  21  22
  23  26
  29  30
  31  33  34  35
  37  38  39
  41  42
  43  46
  47  51
  53  55  57  58
		

Crossrefs

Counting all numbers (not just squarefree) gives A371201.
For the sectioning of A005117 (squarefree between prime):
- sum is A373197 (this sequence)
- length is A373198 = A061398 - 1
- min is A000040
- max is A112925, opposite A112926
For squarefree numbers between powers of two:
- sum is A373123
- length is A077643, partial sums A143658
- min is A372683, delta A373125, indices A372540, firsts of A372475
- max is A372889, delta A373126
For primes between powers of two:
- sum is A293697 (except initial terms)
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, delta A013603
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Total[Select[Range[Prime[n],Prime[n+1]-1],SquareFreeQ]],{n,15}]

A372475 Length of binary expansion (or number of bits) of the n-th squarefree number.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The 10th squarefree number is 14, with binary expansion (1,1,1,0), so a(10) = 4.
		

Crossrefs

For prime instead of squarefree we have A035100, 1's A014499, 0's A035103.
Restriction of A070939 to A005117.
Run-lengths are A077643.
For weight instead of length we have A372433 (restrict A000120 to A005117).
For zeros instead of length we have A372472, firsts A372473.
Positions of first appearances are A372540.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    IntegerLength[Select[Range[1000],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A372475(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m).bit_length() # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A070939(A005117(n)).
a(n) = A372472(n) + A372433(n).

A049096 Numbers k such that 2^k + 1 is divisible by a square > 1.

Original entry on oeis.org

3, 9, 10, 15, 21, 27, 30, 33, 39, 45, 50, 51, 55, 57, 63, 68, 69, 70, 75, 78, 81, 87, 90, 93, 99, 105, 110, 111, 117, 123, 129, 130, 135, 141, 147, 150, 153, 159, 165, 170, 171, 177, 182, 183, 189, 190, 195, 201, 204, 207, 210, 213, 219, 225, 230, 231, 234, 237, 243
Offset: 1

Views

Author

Keywords

Comments

Conjecture: lim n -> infinity a(n)/n = C exists and 4 < C < 9/2. There seems to be a sequence of primes p such that p^2 never divides numbers of the form 2^x + 1: the first few are 2, 7, 23, 31. - Benoit Cloitre, Aug 20 2002
That sequence is A072936. - Robert Israel, Nov 20 2015
The first case where 2^n + 1 is divisible by a square that is coprime to n is n = 182 (where 2^182 + 1 is divisible by 1093^2). - Robert Israel, Jul 07 2014
From Robert Israel, Nov 20 2015: (Start)
Numbers n such that gcd(n, 2^n + 1) > 1 or n = k m where k is odd and 2 m is the order of 2 modulo a Wieferich prime. See link "When p^2 divides 2^n + 1".
If n is in the sequence, then so is k*n for any odd k. (End)
The sequence consists of all odd multiples of { 3, 10, 55, 68, 78, 182, 301, 406, 666, ... }. - M. F. Hasler, Mar 06 2018

Examples

			9 is here because 2^9 + 1 = 513 is divisible by 9.
99 is here because 2^99 + 1 = 3^3*19*67*683*5347*20857*242099935645987 is divisible by 9, i.e. is not squarefree.
		

Crossrefs

Cf. A086982, which is just the same with base b = 10 instead of b = 2.

Programs

Formula

For any a(n+1) - a(n) <= 6 since numbers of form 3^a*(2k+1) a > 0, k >= 0, are in the sequence (2^(3*(2k+1) + 1 is divisible by 9). So are numbers of the form 20k + 10 since 2^(20k+10) + 1 is divisible by 25, 110k + 55 since 2^(110k+55) + 1 is divisible by 11^2, 78 + 156k since 2^(156k+78) + 1 is divisible by 13^2 ... - Benoit Cloitre, Aug 20 2002

Extensions

More terms from James Sellers, Dec 16 1999
More terms from Vladeta Jovovic, Apr 12 2002
Missing term 182 added by Rainer Rosenthal, Nov 01 2005

A372540 Least k such that the k-th squarefree number has binary expansion of length n. Index of the smallest squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 4, 7, 12, 21, 40, 79, 158, 315, 625, 1246, 2492, 4983, 9963, 19921, 39845, 79689, 159361, 318726, 637462, 1274919, 2549835, 5099651, 10199302, 20398665, 40797328, 81594627, 163189198, 326378285, 652756723, 1305513584, 2611027095, 5222054082, 10444108052
Offset: 0

Views

Author

Gus Wiseman, May 10 2024

Keywords

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
       1:                  1 ~ {1}
       2:                 10 ~ {2}
       5:                101 ~ {1,3}
      10:               1010 ~ {2,4}
      17:              10001 ~ {1,5}
      33:             100001 ~ {1,6}
      65:            1000001 ~ {1,7}
     129:           10000001 ~ {1,8}
     257:          100000001 ~ {1,9}
     514:         1000000010 ~ {2,10}
    1027:        10000000011 ~ {1,2,11}
    2049:       100000000001 ~ {1,12}
    4097:      1000000000001 ~ {1,13}
    8193:     10000000000001 ~ {1,14}
   16385:    100000000000001 ~ {1,15}
   32770:   1000000000000010 ~ {2,16}
   65537:  10000000000000001 ~ {1,17}
  131073: 100000000000000001 ~ {1,18}
		

Crossrefs

Counting zeros instead of length gives A372473, firsts of A372472.
For prime instead of squarefree we have:
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
- bits A372684, firsts of A035100
Positions of first appearances in A372475, run-lengths A077643.
For weight instead of length we have A372541, firsts of A372433.
Indices of the squarefree numbers listed by A372683.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A070939 counts bits, binary length, or length of binary expansion.

Programs

  • Mathematica
    nn=1000;
    ssnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
    dcs=IntegerLength[Select[Range[nn],SquareFreeQ],2];
    Table[Position[dcs,i][[1,1]],{i,ssnm[dcs]}]
  • Python
    from itertools import count
    from math import isqrt
    from sympy import mobius, factorint
    def A372540(n): return next(sum(mobius(a)*(k//a**2) for a in range(1, isqrt(k)+1)) for k in count(1<Chai Wah Wu, May 12 2024

Formula

A005117(a(n)) = A372683(n).
a(n) = A143658(n)+1 for n > 1. - Chai Wah Wu, Aug 26 2024

Extensions

a(24)-a(34) from Chai Wah Wu, May 12 2024

A372473 Least k such that the k-th squarefree number has exactly n zeros in its binary expansion.

Original entry on oeis.org

1, 2, 7, 12, 21, 40, 79, 158, 315, 1247, 1246, 2492, 4983, 9963, 19921, 39845, 79689, 159361, 318726, 637462, 1274919, 2549835, 5099651, 10199302, 20398665, 40797328, 81594627, 163189198, 326378285, 652756723, 1305513584, 2611027095, 5222054082, 10444108052
Offset: 0

Views

Author

Gus Wiseman, May 09 2024

Keywords

Comments

Note that the data is not strictly increasing.

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
     1:              1 ~ {1}
     2:             10 ~ {2}
    10:           1010 ~ {2,4}
    17:          10001 ~ {1,5}
    33:         100001 ~ {1,6}
    65:        1000001 ~ {1,7}
   129:       10000001 ~ {1,8}
   257:      100000001 ~ {1,9}
   514:     1000000010 ~ {2,10}
  2051:   100000000011 ~ {1,2,12}
  2049:   100000000001 ~ {1,12}
  4097:  1000000000001 ~ {1,13}
  8193: 10000000000001 ~ {1,14}
		

Crossrefs

Positions of first appearances in A372472.
For prime instead of squarefree we have A372474, A035103, A372517, A014499.
Counting bits (length) gives A372540, firsts of A372475, runs A077643.
Counting 1's (weight) instead of 0's gives A372541, firsts of A372433.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A070939 gives length of binary expansion (number of bits).
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    nn=10000;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,0];
    Table[Position[dcs,i][[1,1]],{i,0,spnm[dcs]}]
  • Python
    from math import isqrt
    from itertools import count
    from sympy import factorint, mobius
    from sympy.utilities.iterables import multiset_permutations
    def A372473(n):
        if n==0: return 1
        for l in count(n):
            m = 1<Chai Wah Wu, May 10 2024

Extensions

a(23)-a(33) from Chai Wah Wu, May 10 2024

A372472 Number of zeros in the binary expansion of the n-th squarefree number.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 0, 3, 2, 2, 2, 1, 2, 1, 1, 0, 4, 4, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 5, 5, 4, 4, 4, 3, 4, 4, 3, 3, 2, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 4, 3, 3, 2, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2, 1, 2, 1, 0, 6, 6, 5, 5, 5, 5, 5, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The 12th squarefree number is 17, with binary expansion (1,0,0,0,1), so a(12) = 3.
		

Crossrefs

Positions of first appearances are A372473.
Restriction of A023416 to A005117.
For prime instead of squarefree we have A035103, ones A014499, bits A035100.
Counting 1's instead of 0's (so restrict A000120 to A005117) gives A372433.
For binary length we have A372475, run-lengths A077643.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

Formula

a(n) = A023416(A005117(n)).
a(n) + A372433(n) = A070939(A005117(n)) = A372475(n).

A373412 Sum of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

12, 99, 52, 180, 93, 49, 335, 279, 156, 629, 99, 540, 237, 245, 125, 521, 567, 450, 963, 340, 347, 728, 1386, 1080, 1637, 243, 244, 1511, 1610, 555, 852, 1171, 2142, 960, 985, 1689, 343, 1042, 351, 1068, 724, 732, 1116, 1905, 1980, 2898, 424, 2161, 3150, 2339
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The length of this antirun is given by A373409.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
		

Crossrefs

The partial sums are a subset of A329472.
Functional neighbors: A068781, A373404, A373405, A373409, A373410, A373411, A373414.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1!=#2&]//Most

A237043 Numbers n such that 2^n - 1 is not squarefree, but 2^d - 1 is squarefree for every proper divisor d of n.

Original entry on oeis.org

6, 20, 21, 110, 136, 155, 253, 364, 602, 657, 812, 889, 979, 1081
Offset: 1

Views

Author

Keywords

Comments

Primitive elements of A049094: the elements of A049094 are precisely the positive multiples of members of this sequence.
If p^2 divides 2^n - 1 for some odd prime p, then by definition the multiplicative order of 2 mod p^2 divides n. The multiplicative order of 2 mod p^2 is p times the multiplicative order of 2 mod p unless p is a Wieferich prime, in which case the two orders are identical. Hence either p is a Wieferich prime or p*log_2(p+1) <= n. This should allow finding larger members of this sequence. - Charles R Greathouse IV, Feb 04 2014
If n is in the sequence and m>1 then m*n is not in the sequence. Because n is a proper divisor of m*n and 2^n-1 is not squarefree. - Farideh Firoozbakht, Feb 11 2014
a(15) >= 1207. - Max Alekseyev, Sep 28 2015
From Daniel Suteu, Jul 03 2019: (Start)
The following numbers are also in the sequence: {1755, 2265, 2485, 2756, 3081, 3164, 4112, 6757, 8251, 13861, 18533}.
Probably, the following numbers are also terms: {3422, 5253, 6806, 8164, 9316, 11342, 12550, 15025, 15026, 17030, 17404, 17468, 18145, 19670, 19701, 22052}. (End)

Crossrefs

Programs

  • Mathematica
    Select[Range@ 160, And[AllTrue[2^#2 - 1, SquareFreeQ], ! SquareFreeQ[2^First@ #1 - 1]] & @@ TakeDrop[Divisors@ #, -1] &] (* Michael De Vlieger, Jul 07 2019 *)
  • PARI
    default(factor_add_primes, 1);
    isA049094(n)=my(f=factor(n>>valuation(n, 2))[, 1], N, o); for(i=1, #f, if(n%(f[i]-1) == 0, return(1))); N=2^n-1; fordiv(n, d, f=factor(2^d-1)[, 1]; for(i=1, #f, if(d==n, return(!issquarefree(N))); o=valuation(N, f[i]); if(o>1, return(1)); N/=f[i]^o))
    is(n)=fordiv(n,d,if(isA049094(d),return(d==n))); 0
    
  • PARI
    \\ Simpler but slow
    is(n)=fordiv(n,d,if(!issquarefree(2^d-1),return(d==n))); 0

Extensions

a(14) from Charles R Greathouse IV, Sep 21 2015, following Womack's factorization of 2^991-1.

A373410 Minimum of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

4, 9, 25, 28, 45, 49, 50, 64, 76, 81, 99, 100, 117, 121, 125, 126, 136, 148, 153, 169, 172, 176, 189, 208, 225, 243, 244, 245, 261, 276, 280, 289, 297, 316, 325, 333, 343, 344, 351, 352, 361, 364, 369, 376, 388, 405, 424, 425, 441, 460, 476, 477, 496, 508, 513
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The maximum is given by A068781.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Consists of 4 and all nonsquarefree numbers n such that n - 1 is also nonsquarefree.

Examples

			Row-minima of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
		

Crossrefs

Functional neighbors: A005381, A006512, A053806, A068781, A373408, A373409, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    First/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1!=#2&]

Formula

a(1) = 4; a(n>1) = A068781(n-1) + 1.

A372541 Least k such that the k-th squarefree number has exactly n ones in its binary expansion.

Original entry on oeis.org

1, 3, 6, 11, 20, 60, 78, 157, 314, 624, 1245, 3736, 4982, 9962, 19920, 39844, 79688, 239046, 318725, 956194, 1912371, 2549834, 5099650, 15298984, 20398664, 40797327, 81594626, 163189197, 326378284, 979135127, 1305513583, 2611027094, 5222054081, 10444108051
Offset: 0

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
       1:                   1 ~ {1}
       3:                  11 ~ {1,2}
       7:                 111 ~ {1,2,3}
      15:                1111 ~ {1,2,3,4}
      31:               11111 ~ {1,2,3,4,5}
      95:             1011111 ~ {1,2,3,4,5,7}
     127:             1111111 ~ {1,2,3,4,5,6,7}
     255:            11111111 ~ {1,2,3,4,5,6,7,8}
     511:           111111111 ~ {1,2,3,4,5,6,7,8,9}
    1023:          1111111111 ~ {1,2,3,4,5,6,7,8,9,10}
    2047:         11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11}
    6143:       1011111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,13}
    8191:       1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13}
   16383:      11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
   32767:     111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
   65535:    1111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
  131071:   11111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}
		

Crossrefs

Positions of firsts appearances in A372433.
Counting zeros instead of ones gives A372473, firsts in A372472.
For prime instead of squarefree we have A372517, firsts of A014499.
Counting bits (length) gives A372540, firsts of A372475, runs A077643.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A145037, A097110 count ones minus zeros, for primes A372516, A177796.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    nn=10000;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,1];
    Table[Position[dcs,i][[1,1]],{i,spnm[dcs-1]}]
  • Python
    from math import isqrt
    from itertools import count
    from sympy import factorint, mobius
    from sympy.utilities.iterables import multiset_permutations
    def A372541(n):
        if n==0: return 1
        for l in count(n):
            m = 1<Chai Wah Wu, May 10 2024

Extensions

a(23)-a(33) from Chai Wah Wu, May 10 2024
Previous Showing 11-20 of 49 results. Next