cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A264790 Numbers k such that k^2 + 17 is prime.

Original entry on oeis.org

0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2015

Keywords

Comments

Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.

Examples

			a(3) = 24 because 24^2 + 17 = 593, which is prime.
		

Crossrefs

Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).

Programs

  • Magma
    [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
    

Formula

A000005(A241847(a(n))) = 2.
A241847(a(n)) = A228244(n).

Extensions

Edited by Bruno Berselli, Nov 26 2015

A356109 Numbers k such that k^2 + {1,3,7,13} are prime.

Original entry on oeis.org

2, 4, 10, 5996, 8894, 11204, 14290, 23110, 30866, 37594, 43054, 64390, 74554, 83464, 93460, 109456, 111940, 132304, 151904, 184706, 238850, 262630, 265990, 277630, 300206, 315410, 352600, 355450, 376190, 404954, 415180, 462830, 483494, 512354, 512704, 566296
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			2^2 + {1,3,7,13} = {5,7,11,17} all prime.
4^2 + {1,3,7,13} = {17,19,23,29} all prime.
		

Crossrefs

Intersection of A005574, A049422, A114270, A113536.
Subsequence of A182238.

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[500000], AllTrue[#^2 + {1,3,7,13}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A153262 Squares such that square+-3=primes.

Original entry on oeis.org

16, 64, 100, 196, 4096, 8464, 12544, 19600, 21316, 29584, 47524, 88804, 92416, 103684, 106276, 115600, 122500, 126736, 173056, 193600, 220900, 258064, 306916, 313600, 336400, 391876, 401956, 425104, 446224, 470596, 481636, 495616, 529984
Offset: 1

Views

Author

Keywords

Comments

16-3=13,16+3=19,primes; 64-3=61,64+3=67,primes;...
The squared members of the intersection of A028873 and A049422. [From R. J. Mathar, Jan 03 2009]

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n^2;If[PrimeQ[p-3]&&PrimeQ[p+3],AppendTo[lst,p]],{n,7!}];lst
    Select[Range[750]^2,And@@PrimeQ[#+{3,-3}]&] (* Harvey P. Dale, Dec 19 2012 *)

A155962 Numbers n with property that 3*(2n)^2+1 and 1*(2n)^2+3 are primes.

Original entry on oeis.org

1, 4, 11, 32, 56, 73, 80, 109, 122, 143, 158, 175, 182, 217, 256, 262, 280, 284, 290, 308, 343, 347, 403, 431, 434, 437, 535, 581, 598, 619, 655, 665, 928, 973, 980, 1018, 1036, 1046, 1096, 1120, 1159, 1207, 1222, 1235, 1267, 1382, 1393, 1439, 1460, 1463, 1501
Offset: 1

Views

Author

Zak Seidov, Jan 31 2009

Keywords

Comments

2*A155962 is intersection of A049422 and A111051.

Examples

			n=1, {3*(2n)^2+1, 1*(2n)^2+3}={13,7};
n=4, {3*(2n)^2+1, 1*(2n)^2+3}={193,67};
n=11, {3*(2n)^2+1, 1*(2n)^2+3}={1453,487};
n=32, {3*(2n)^2+1,1*(2n)^2+3}={12289,4099}.
Resulting primes are congruent to 1 mod 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1600],AllTrue[{3(2#)^2+1,(2#)^2+3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 30 2016 *)

Extensions

All the terms in the b-file had to be divided by 2. Corrected by N. J. A. Sloane, Aug 31 2009.

A329102 Numbers k such that both k^2 + 3 and 2^k + 3 are primes.

Original entry on oeis.org

2, 4, 28, 784
Offset: 1

Views

Author

Alex Ratushnyak, Nov 04 2019

Keywords

Comments

Intersection of A057732 and A049422.
a(5) > 20000. - Tyler NeSmith, May 15 2021
a(5) > 2205444, using A057732. - Michael S. Branicky, Feb 16 2024

Crossrefs

A356110 Numbers k such that k^2 + {1,3,7,13,31} are prime.

Original entry on oeis.org

4, 10, 14290, 43054, 109456, 315410, 352600, 483494, 566296, 685114, 927070, 1106116, 1248796, 1501174, 1997986, 2399204, 2501404, 2553100, 2726840, 2874680, 3291760, 4129394, 4473766, 4794520, 4901144, 6350306, 7444070, 7753456, 7892504, 8009536, 8069540
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			4^2 + {1,3,7,13,31} = {17,19,23,29,47} are all prime.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13,31]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[10^6], AllTrue[#^2 + {1,3,7,13,31}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,31})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A356175 Numbers k such that k^2 + {1,3,7,13,163} are prime.

Original entry on oeis.org

2, 4, 10, 14290, 64390, 74554, 83464, 93460, 132304, 238850, 262630, 277630, 300206, 352600, 376190, 404954, 415180, 610340, 806180, 984686, 1025650, 1047050, 1106116, 1382860, 2014624, 2440714, 2525870, 2538344, 2760026, 2826380, 3145600, 3508586, 3715156
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 28 2022

Keywords

Comments

For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file.
All terms are 2 or 4 modulo 6.

Examples

			2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
		

Crossrefs

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 28 2022
  • Mathematica
    Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    is(k)=my(v=[1,3,7,13,163],ok=1);for(i=1,#v,if(!isprime(k^2+v[i]),ok=0;break));ok
    
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,163})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022

A177173 Numbers n such that n^2 + 3^k is prime for k = 1, 2, 3.

Original entry on oeis.org

2, 10, 38, 52, 350, 542, 1102, 1460, 1522, 1732, 2510, 2642, 2768, 3692, 4592, 4658, 4690, 7238, 8180, 8320, 8960, 11392, 13468, 14920, 15908, 16600, 16832, 17878, 18820, 19100, 21532, 22060, 23240, 23842, 23968, 24622, 26428, 26638, 27170
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 04 2010

Keywords

Comments

p = n^2 + 3, q = n^2 + 3^2 = p+6, r = n^2 + 3^3 = p+18 to be primes.
Trivially n is not a multiple of 3 and necessarily LSD of such n is e = 0, 2 or 8 as k^2+3^2 is a multiple of 5 for k = 4 or 6.
Note n^2 + m^k prime (k = 1, 2, 3) in case of m = 2 is (n^2+2,n^2+2^2,n^2+2^3) = (p,p+2,p+6): i.e., a "near square" prime triple of the first kind.
Case k=2: q is also a Pythagorean prime (A002144)
n = 350: first case where p = 122503 = prime(i), q and r are consecutive primes (i = 122503), sod(p) = sod(i) = 13, a so-called Honaker prime.
p = prime(i), q, r consecutive primes, (n,i): (350,11524) (542,25517) (1460,157987) (3692,887608) (4592,1335102) (4690,1389018).

Examples

			2^2 + 3 = 7 = prime(4), 2^2 + 3^2 = 13 = prime(6), 2^2 + 3^3 = 31 = prime(11), 2 is first term.
10^2 + 3 = 103 = prime(27), 10^2 + 3^2 = 109 = prime(29), 10^2 + 3^3 = 127 = prime(31), 10 is 2nd term.
Curiously k=0: 10^2 + 3^0 = 101 = prime(26), k=4: 10^2 + 3^4 = 181 = prime(42), necessarily LSD for such n is e = 0, k= 5: 10^2 + 3^5 = 7^3, k=6: 10^2 + 3^6 = 829 = prime(145), 10^2 + 3^7 = 2287 = prime(340), 10^2 + 3^8 = 6661 = prime(859)
n = 8180, primes for exponents k = 0, 1, 2, 3 and 4: p=66912403=prime(3946899), q=66912409=prime(3946900), r=66912427=prime(3946902), n^2+3^0=66912401=prime(3946898) and n^2+3^4=66912481=prime(3946905).
n = 8960, primes for exponents k = 1, 2, 3, 4, 5 and 6: p=80281603=prime(4684862), q=80281609=prime(4684863), r=80281627=prime(4684865), n^2+3^4=80281681=prime(4684868), n^2+3^5=80281843=prime(4684877), n^2+3^5=80282329=prime(4684904).
		

References

  • F. Padberg, Zahlentheorie und Arithmetik, Spektrum Akademie Verlag, Heidelberg-Berlin 1999.
  • M. du Sautoy, Die Musik der Primzahlen: Auf den Spuren des groessten Raetsels der Mathematik, Deutscher Taschenbuch Verlag, 2006.

Crossrefs

Programs

Extensions

More terms from R. J. Mathar, Nov 01 2010
Previous Showing 21-28 of 28 results.