A264790
Numbers k such that k^2 + 17 is prime.
Original entry on oeis.org
0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1
a(3) = 24 because 24^2 + 17 = 593, which is prime.
Other sequences of the type "Numbers n such that n^2 + k is prime":
A005574 (k=1),
A067201 (k=2),
A049422 (k=3),
A007591 (k=4),
A078402 (k=5),
A114269 (k=6),
A114270 (k=7),
A114271 (k=8),
A114272 (k=9),
A114273 (k=10),
A114274 (k=11),
A114275 (k=12),
A113536 (k=13),
A121250 (k=14),
A121982 (k=15),
A122062 (k=16).
-
[n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
-
Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
-
for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
A356109
Numbers k such that k^2 + {1,3,7,13} are prime.
Original entry on oeis.org
2, 4, 10, 5996, 8894, 11204, 14290, 23110, 30866, 37594, 43054, 64390, 74554, 83464, 93460, 109456, 111940, 132304, 151904, 184706, 238850, 262630, 265990, 277630, 300206, 315410, 352600, 355450, 376190, 404954, 415180, 462830, 483494, 512354, 512704, 566296
Offset: 1
2^2 + {1,3,7,13} = {5,7,11,17} all prime.
4^2 + {1,3,7,13} = {17,19,23,29} all prime.
-
q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13]):
select(q, [$0..1000000])[]; # Alois P. Heinz, Jul 27 2022
-
Select[Range[500000], AllTrue[#^2 + {1,3,7,13}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
-
from sympy import isprime
def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13})
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022
A153262
Squares such that square+-3=primes.
Original entry on oeis.org
16, 64, 100, 196, 4096, 8464, 12544, 19600, 21316, 29584, 47524, 88804, 92416, 103684, 106276, 115600, 122500, 126736, 173056, 193600, 220900, 258064, 306916, 313600, 336400, 391876, 401956, 425104, 446224, 470596, 481636, 495616, 529984
Offset: 1
-
lst={};Do[p=n^2;If[PrimeQ[p-3]&&PrimeQ[p+3],AppendTo[lst,p]],{n,7!}];lst
Select[Range[750]^2,And@@PrimeQ[#+{3,-3}]&] (* Harvey P. Dale, Dec 19 2012 *)
A155962
Numbers n with property that 3*(2n)^2+1 and 1*(2n)^2+3 are primes.
Original entry on oeis.org
1, 4, 11, 32, 56, 73, 80, 109, 122, 143, 158, 175, 182, 217, 256, 262, 280, 284, 290, 308, 343, 347, 403, 431, 434, 437, 535, 581, 598, 619, 655, 665, 928, 973, 980, 1018, 1036, 1046, 1096, 1120, 1159, 1207, 1222, 1235, 1267, 1382, 1393, 1439, 1460, 1463, 1501
Offset: 1
n=1, {3*(2n)^2+1, 1*(2n)^2+3}={13,7};
n=4, {3*(2n)^2+1, 1*(2n)^2+3}={193,67};
n=11, {3*(2n)^2+1, 1*(2n)^2+3}={1453,487};
n=32, {3*(2n)^2+1,1*(2n)^2+3}={12289,4099}.
Resulting primes are congruent to 1 mod 3.
-
Select[Range[1600],AllTrue[{3(2#)^2+1,(2#)^2+3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 30 2016 *)
All the terms in the b-file had to be divided by 2. Corrected by
N. J. A. Sloane, Aug 31 2009.
A329102
Numbers k such that both k^2 + 3 and 2^k + 3 are primes.
Original entry on oeis.org
A356110
Numbers k such that k^2 + {1,3,7,13,31} are prime.
Original entry on oeis.org
4, 10, 14290, 43054, 109456, 315410, 352600, 483494, 566296, 685114, 927070, 1106116, 1248796, 1501174, 1997986, 2399204, 2501404, 2553100, 2726840, 2874680, 3291760, 4129394, 4473766, 4794520, 4901144, 6350306, 7444070, 7753456, 7892504, 8009536, 8069540
Offset: 1
4^2 + {1,3,7,13,31} = {17,19,23,29,47} are all prime.
-
q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13,31]):
select(q, [$0..1000000])[]; # Alois P. Heinz, Jul 27 2022
-
Select[Range[10^6], AllTrue[#^2 + {1,3,7,13,31}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
-
from sympy import isprime
def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,31})
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022
A356175
Numbers k such that k^2 + {1,3,7,13,163} are prime.
Original entry on oeis.org
2, 4, 10, 14290, 64390, 74554, 83464, 93460, 132304, 238850, 262630, 277630, 300206, 352600, 376190, 404954, 415180, 610340, 806180, 984686, 1025650, 1047050, 1106116, 1382860, 2014624, 2440714, 2525870, 2538344, 2760026, 2826380, 3145600, 3508586, 3715156
Offset: 1
2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
-
q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
select(q, [$0..1000000])[]; # Alois P. Heinz, Jul 28 2022
-
Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
-
is(k)=my(v=[1,3,7,13,163],ok=1);for(i=1,#v,if(!isprime(k^2+v[i]),ok=0;break));ok
-
from sympy import isprime
def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13,163})
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022
A177173
Numbers n such that n^2 + 3^k is prime for k = 1, 2, 3.
Original entry on oeis.org
2, 10, 38, 52, 350, 542, 1102, 1460, 1522, 1732, 2510, 2642, 2768, 3692, 4592, 4658, 4690, 7238, 8180, 8320, 8960, 11392, 13468, 14920, 15908, 16600, 16832, 17878, 18820, 19100, 21532, 22060, 23240, 23842, 23968, 24622, 26428, 26638, 27170
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 04 2010
2^2 + 3 = 7 = prime(4), 2^2 + 3^2 = 13 = prime(6), 2^2 + 3^3 = 31 = prime(11), 2 is first term.
10^2 + 3 = 103 = prime(27), 10^2 + 3^2 = 109 = prime(29), 10^2 + 3^3 = 127 = prime(31), 10 is 2nd term.
Curiously k=0: 10^2 + 3^0 = 101 = prime(26), k=4: 10^2 + 3^4 = 181 = prime(42), necessarily LSD for such n is e = 0, k= 5: 10^2 + 3^5 = 7^3, k=6: 10^2 + 3^6 = 829 = prime(145), 10^2 + 3^7 = 2287 = prime(340), 10^2 + 3^8 = 6661 = prime(859)
n = 8180, primes for exponents k = 0, 1, 2, 3 and 4: p=66912403=prime(3946899), q=66912409=prime(3946900), r=66912427=prime(3946902), n^2+3^0=66912401=prime(3946898) and n^2+3^4=66912481=prime(3946905).
n = 8960, primes for exponents k = 1, 2, 3, 4, 5 and 6: p=80281603=prime(4684862), q=80281609=prime(4684863), r=80281627=prime(4684865), n^2+3^4=80281681=prime(4684868), n^2+3^5=80281843=prime(4684877), n^2+3^5=80282329=prime(4684904).
- F. Padberg, Zahlentheorie und Arithmetik, Spektrum Akademie Verlag, Heidelberg-Berlin 1999.
- M. du Sautoy, Die Musik der Primzahlen: Auf den Spuren des groessten Raetsels der Mathematik, Deutscher Taschenbuch Verlag, 2006.
Comments