A119490
Sum of the absolute values in row n of A118687.
Original entry on oeis.org
1, 2, 4, 8, 16, 80, 400, 10000, 250000, 48250000, 83424250000, 1441654464250000, 24913230796704250000, 5166032451235389984250000, 1071233655120621702524064250000, 3109835221395024747917162004384250000, 135419643726614411057926317695276801184250000
Offset: 0
-
A049614[n_]:= n!/Product[Prime[i], {i, 1, PrimePi[n]}];
b:= Join[{{1}}, Table[CoefficientList[Product[1 -A049614[k]*x, {k,0,n}], x], {n, 0, 21}]];
Table[Sum[Abs[b[[n, j]]], {j, n}], {n, 20}] (* G. C. Greubel, Feb 07 2021 *)
-
def A049614(n): return factorial(n)/product( nth_prime(j) for j in (1..prime_pi(n)) )
def A118687(n,k): return ( product(1 -A049614(k)*x for k in (0..n)) ).series(x, n+2).list()[k]
[1]+[sum(abs(A118687(n, k)) for k in (0..n+1)) for n in (0..20)] # G. C. Greubel, Feb 07 2021
A131527
a(n) = 4*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)*(n^5 + 5!)/5!.
Original entry on oeis.org
1152, 4235, 51072, 1844766, 67267200, 1489787937, 20516082048, 194830108540, 1389727430784, 7923082634775, 37759956198272, 155476758621786, 566979054415488, 1866434208254637, 5629739963760000, 15745829707255032, 41231732634193024, 101887952581305891
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
-
Table[(Times@@Table[n^k+k!,{k,5}])/30,{n,0,20}] (* Harvey P. Dale, Oct 12 2020 *)
LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1152,4235,51072,1844766,67267200,1489787937,20516082048,194830108540,1389727430784,7923082634775,37759956198272,155476758621786,566979054415488,1866434208254637,5629739963760000,15745829707255032},30] (* Harvey P. Dale, May 15 2022 *)
A131528
a(n) = (n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)/2!.
Original entry on oeis.org
144, 525, 5040, 76230, 882000, 6886539, 38974320, 172650300, 633845520, 2008589625, 5657204784, 14470043490, 34161950160, 75378387735, 156979350000, 310979592504, 589757174160, 1076298622245, 1898430030000, 3248190882750, 5407743199824, 8783474489955
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
a[n_]:=(n+1)(n^2+2)(n^3+6)(n^4+24)/2;Table[a[n],{n,0,21}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{144, 525, 5040, 76230, 882000, 6886539, 38974320, 172650300, 633845520, 2008589625,5657204784, 14470043490},22] (* James C. McMahon, Feb 25 2025 *)
A131682
a(n) = (n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)/3!.
Original entry on oeis.org
2, 7, 42, 242, 1050, 3537, 9842, 23732, 51282, 101675, 188122, 328902, 548522, 878997, 1361250, 2046632, 2998562, 4294287, 6026762, 8306650, 11264442, 15052697, 19848402, 25855452, 33307250, 42469427, 53642682, 67165742, 83418442, 102824925, 125856962
Offset: 0
-
Table[(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)/3!, {n,0,50}] (* G. C. Greubel, Feb 21 2017 *)
-
x='x+O('x^50); Vec((2-7*x+35*x^2+25*x^3+63*x^4+2*x^5)/(1-x)^7) \\ G. C. Greubel, Feb 21 2017
A131684
a(n) = 24*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*...*(n^6 + 6!)/6!.
Original entry on oeis.org
829440, 3053435, 40040448, 2673065934, 323958835200, 24350583830265, 971969903106048, 23061845117771260, 365309311365605376, 4216355578004498775, 37787143366734755840, 275548505246977513866, 1693398609738955671552, 9010265266941299501973, 42393383140543522560000
Offset: 0
A300902
a(n) = n! / Product_{p prime < n}.
Original entry on oeis.org
1, 1, 2, 3, 4, 20, 24, 168, 192, 1728, 17280, 190080, 207360, 2695680, 2903040, 43545600, 696729600, 11844403200, 12541132800, 238281523200, 250822656000, 5267275776000, 115880067072000, 2665241542656000, 2781121609728000, 69528040243200000, 1807729046323200000
Offset: 0
a(6) = 6! / Product_{p prime < 6} = 6 * 5 * 4 * 3 * 2/(5 * 3 * 2) = 6 * 4 = 24.
-
using Nemo
A300902(n) = div(fac(n), primorial(max(1, n-1)))
[A300902(n) for n in 0:26] |> println # Peter Luschny, Mar 16 2018
-
a:= n-> n!/mul(`if`(isprime(i), i, 1), i=1..n-1):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 16 2018
-
Table[n!/(Times@@Prime[Range[PrimePi[n - 1]]]), {n, 0, 29}] (* Alonso del Arte, Mar 25 2018 *)
-
a(n) = my(v=primes(primepi(n-1))); n!/prod(k=1, #v, v[k]); \\ Michel Marcus, Mar 15 2018
-
from _future_ import division
from sympy import isprime
A300902_list, m = [1], 1
for n in range(1,501):
m *= n
A300902_list.append(m)
if isprime(n):
m //= n # Chai Wah Wu, Mar 16 2018
A117733
Sum of the n-th primorial and the n-th compositorial number.
Original entry on oeis.org
2, 3, 7, 10, 34, 54, 234, 402, 1938, 17490, 19590, 209670, 237390, 2933070, 43575630, 696759630, 697240110, 12541643310, 12550832490, 250832355690
Offset: 1
-
f[n_] := If[PrimeQ[n] == True, 1, n] cf[0] = 1; cf[n_Integer?Positive] := cf[n] = f[n]*cf[n - 1] g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] a=Table[cf[n] + p[n], {n, 1, 20}]
Offset and A-number corrected; comment rewritten - The Assoc Eds of the OEIS, Oct 20 2010
A117754
Triangle T(n, k) = (f(n, 1 + (n mod 3)) + f(k, 1 + (k mod 3))) mod n!, read by rows (see formula for f(n, k)).
Original entry on oeis.org
0, 0, 0, 1, 1, 0, 2, 2, 3, 2, 7, 7, 8, 7, 12, 1, 1, 2, 1, 6, 0, 25, 25, 26, 25, 30, 144, 48, 211, 211, 212, 211, 216, 330, 234, 420, 1, 1, 2, 1, 6, 120, 24, 210, 0, 1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456, 211, 211, 212, 211, 216, 330, 234, 420, 40530, 1938, 420
Offset: 0
Triangle begins as:
0;
0, 0;
1, 1, 0;
2, 2, 3, 2;
7, 7, 8, 7, 12;
1, 1, 2, 1, 6, 0;
25, 25, 26, 25, 30, 144, 48;
211, 211, 212, 211, 216, 330, 234, 420;
1, 1, 2, 1, 6, 120, 24, 210, 0;
1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456;
211, 211, 212, 211, 216, 330, 234, 420, 40530, 1938, 420;
-
A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >;
function f(n,k)
if k eq 1 then return A049614(n);
elif k eq 2 then return A034386(n);
else return Factorial(n);
end if;
end function;
A117754:= func< n,k | Floor(f(n, 1+(n mod 3))+f( k, 1+(k mod 3))) mod
Factorial(n) >;
[A117754(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
-
f[n_]:= If[PrimeQ[n],1,n];
cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
g[n_]:= If[PrimeQ[n], n, 1];
p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]]; (* A034386 *)
f[n_, 1]=cf[n]; f[n_, 2]=p[n]; f[n_, 3]=n!;
T[n_, k_]:= Mod[f[n, 1 + Mod[n, 3]] + f[k, 1 + Mod[k, 3]], n!];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
from sympy import primorial
def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
def A034386(n): return 1 if n == 0 else primorial(n, nth=False)
def f(n,m):
if m==1: return A049614(n)
elif m==2: return A034386(n)
else: return factorial(n)
def A117754(n, k): return (f(n, 1+(n%3))+f(k, 1+(k%3)))%factorial(n)
flatten([[A117754(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023
A271387
Numerator of prime(n)#/n!, where prime(n)# is the prime factorial function.
Original entry on oeis.org
1, 2, 3, 5, 35, 77, 1001, 2431, 46189, 1062347, 30808063, 86822723, 3212440751, 10131543907, 435656388001, 20475850236047, 1085220062510491, 3766351981654057, 229747470880897477, 810162134158954261, 57521511525285752531, 4199070341345859934763, 331726556966322934846277
Offset: 0
1, 2, 3, 5, 35/4, 77/4, 1001/24, 2431/24, 46189/192, 1062347/1728, 30808063/17280, 86822723/17280, 3212440751/207360, 10131543907/207360, 435656388001/2903040, ...
a(8) = 46189, because prime(8)#/8! = (2*3*5*7*11*13*17*19)/(1*2*3*4*5*6*7*8) = 46189/192.
-
Table[Numerator[Product[Prime@ k, {k, n}]/n!], {n, 0, 22}] (* Michael De Vlieger, Apr 08 2016 *)
-
a(n) = numerator(prod(k=1, n, prime(k))/n!); \\ Michel Marcus, Apr 09 2016
A085274
Composite k such that (k!/k#) + 1 is a semiprime, where k# = primorial numbers A034386.
Original entry on oeis.org
6, 10, 21, 22, 24, 25, 27, 30, 39, 48, 52, 57, 65, 87, 94, 110, 114, 124, 156, 161
Offset: 1
25!/25# + 1 is a product of two primes: 69528040243200001 = 2594807 * 26795071943.
Comments