cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A119490 Sum of the absolute values in row n of A118687.

Original entry on oeis.org

1, 2, 4, 8, 16, 80, 400, 10000, 250000, 48250000, 83424250000, 1441654464250000, 24913230796704250000, 5166032451235389984250000, 1071233655120621702524064250000, 3109835221395024747917162004384250000, 135419643726614411057926317695276801184250000
Offset: 0

Views

Author

Roger L. Bagula, May 25 2006

Keywords

Crossrefs

Cf. A118687.

Programs

  • Mathematica
    A049614[n_]:= n!/Product[Prime[i], {i, 1, PrimePi[n]}];
    b:= Join[{{1}}, Table[CoefficientList[Product[1 -A049614[k]*x, {k,0,n}], x], {n, 0, 21}]];
    Table[Sum[Abs[b[[n, j]]], {j, n}], {n, 20}] (* G. C. Greubel, Feb 07 2021 *)
  • Sage
    def A049614(n): return factorial(n)/product( nth_prime(j) for j in (1..prime_pi(n)) )
    def A118687(n,k): return ( product(1 -A049614(k)*x for k in (0..n)) ).series(x, n+2).list()[k]
    [1]+[sum(abs(A118687(n, k)) for k in (0..n+1)) for n in (0..20)] # G. C. Greubel, Feb 07 2021

Extensions

Terms a(12) onward added by G. C. Greubel, Feb 07 2021

A131527 a(n) = 4*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)*(n^5 + 5!)/5!.

Original entry on oeis.org

1152, 4235, 51072, 1844766, 67267200, 1489787937, 20516082048, 194830108540, 1389727430784, 7923082634775, 37759956198272, 155476758621786, 566979054415488, 1866434208254637, 5629739963760000, 15745829707255032, 41231732634193024, 101887952581305891
Offset: 0

Views

Author

Keywords

Comments

Comment from Peter J. C. Moses, Aug 29 2007: the values of m = m(k) needed to make the sequence a(n,k) = m (n^1 + 1!) (n^2 + 2!) ... (n^i + k!) / k! (n >= 0) take integral values for all n are given in A049614.

Programs

  • Mathematica
    Table[(Times@@Table[n^k+k!,{k,5}])/30,{n,0,20}] (* Harvey P. Dale, Oct 12 2020 *)
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1152,4235,51072,1844766,67267200,1489787937,20516082048,194830108540,1389727430784,7923082634775,37759956198272,155476758621786,566979054415488,1866434208254637,5629739963760000,15745829707255032},30] (* Harvey P. Dale, May 15 2022 *)

Formula

G.f.: -(1408*x^14 -221419*x^13 -23074512*x^12 -437328710*x^11 -3130260112*x^10 -9871683909*x^9 -14838023712*x^8 -10832842836*x^7 -3802147872*x^6 -608960101*x^5 -43604624*x^4 -890694*x^3 -121552*x^2 +14197*x -1152) / (x -1)^16. - Colin Barker, Aug 08 2013

A131528 a(n) = (n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)/2!.

Original entry on oeis.org

144, 525, 5040, 76230, 882000, 6886539, 38974320, 172650300, 633845520, 2008589625, 5657204784, 14470043490, 34161950160, 75378387735, 156979350000, 310979592504, 589757174160, 1076298622245, 1898430030000, 3248190882750, 5407743199824, 8783474489955
Offset: 0

Views

Author

Keywords

Comments

The values of m = m(k) needed to make the sequence a(n,k) = m (n^1 + 1!) (n^2 + 2!) ... (n^k + k!) / k! (n >= 0) take integral values for all n are given in A049614. - Peter J. C. Moses, Aug 29 2007

Crossrefs

Programs

  • Mathematica
    a[n_]:=(n+1)(n^2+2)(n^3+6)(n^4+24)/2;Table[a[n],{n,0,21}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{144, 525, 5040, 76230, 882000, 6886539, 38974320, 172650300, 633845520, 2008589625,5657204784, 14470043490},22] (* James C. McMahon, Feb 25 2025 *)

Formula

G.f.: (-3*(48 + x*(-353 + x*(2395 + x*(8635 + x*(93855 + x*(217437 + x*(213873 + 5*x*(12325 + x*(1441 + 16*x)))))))))) / (x - 1)^11. - Peter J. C. Moses, Aug 29 2007
a(n) = 3*A131683(n). - James C. McMahon, Feb 26 2025

A131682 a(n) = (n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)/3!.

Original entry on oeis.org

2, 7, 42, 242, 1050, 3537, 9842, 23732, 51282, 101675, 188122, 328902, 548522, 878997, 1361250, 2046632, 2998562, 4294287, 6026762, 8306650, 11264442, 15052697, 19848402, 25855452, 33307250, 42469427, 53642682, 67165742, 83418442, 102824925, 125856962
Offset: 0

Views

Author

Keywords

Crossrefs

See A049614.

Programs

  • Mathematica
    Table[(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)/3!, {n,0,50}] (* G. C. Greubel, Feb 21 2017 *)
  • PARI
    x='x+O('x^50); Vec((2-7*x+35*x^2+25*x^3+63*x^4+2*x^5)/(1-x)^7) \\ G. C. Greubel, Feb 21 2017

Formula

G.f.: (2-7*x+35*x^2+25*x^3+63*x^4+2*x^5)/(1-x)^7. - R. J. Mathar, Nov 14 2007 (Minor edits from Jaume Oliver Lafont, Sep 30 2009)

A131684 a(n) = 24*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*...*(n^6 + 6!)/6!.

Original entry on oeis.org

829440, 3053435, 40040448, 2673065934, 323958835200, 24350583830265, 971969903106048, 23061845117771260, 365309311365605376, 4216355578004498775, 37787143366734755840, 275548505246977513866, 1693398609738955671552, 9010265266941299501973, 42393383140543522560000
Offset: 0

Views

Author

Keywords

Crossrefs

See A049614.

Programs

  • PARI
    a(n) = 24*prod(k=1, 6, n^k + k!)/6!; \\ Michel Marcus, Apr 15 2015

Formula

G.f.: -(1103872*x^20 -312478243*x^19 -120671064318*x^18 -10924415464963*x^17 -365289416188928*x^16 -5416497937794108*x^15 -40283003777941144*x^14 -162386613652960172*x^13 -372036568602512352*x^12 -497148917411217834*x^11 -390969147820033860*x^10 -179789868762494298*x^9 -47275965677665472*x^8 -6823180930101292*x^7 -507249401959608*x^6 -17779798800764*x^5 -275765791840*x^4 -1220181963*x^3 -164465518*x^2 +15194245*x -829440) / (x -1)^22. - Colin Barker, Apr 15 2015

A300902 a(n) = n! / Product_{p prime < n}.

Original entry on oeis.org

1, 1, 2, 3, 4, 20, 24, 168, 192, 1728, 17280, 190080, 207360, 2695680, 2903040, 43545600, 696729600, 11844403200, 12541132800, 238281523200, 250822656000, 5267275776000, 115880067072000, 2665241542656000, 2781121609728000, 69528040243200000, 1807729046323200000
Offset: 0

Views

Author

Pedro Caceres, Mar 14 2018

Keywords

Comments

Sum_{n >= 0} 1/a(n) = 3.1868081118360746...

Examples

			a(6) = 6! / Product_{p prime < 6} = 6 * 5 * 4 * 3 * 2/(5 * 3 * 2) = 6 * 4 = 24.
		

Crossrefs

Programs

  • Julia
    using Nemo
    A300902(n) = div(fac(n), primorial(max(1, n-1)))
    [A300902(n) for n in 0:26] |> println # Peter Luschny, Mar 16 2018
    
  • Maple
    a:= n-> n!/mul(`if`(isprime(i), i, 1), i=1..n-1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 16 2018
  • Mathematica
    Table[n!/(Times@@Prime[Range[PrimePi[n - 1]]]), {n, 0, 29}] (* Alonso del Arte, Mar 25 2018 *)
  • PARI
    a(n) = my(v=primes(primepi(n-1))); n!/prod(k=1, #v, v[k]); \\ Michel Marcus, Mar 15 2018
    
  • Python
    from _future_ import division
    from sympy import isprime
    A300902_list, m = [1], 1
    for n in range(1,501):
        m *= n
        A300902_list.append(m)
        if isprime(n):
            m //= n # Chai Wah Wu, Mar 16 2018

Formula

a(n) = A000142(n)/A034386(n-1) for n>0, a(0) = 1.
a(n) = A049614(n)*A089026(n) for n>0, a(0) = 1.

A117733 Sum of the n-th primorial and the n-th compositorial number.

Original entry on oeis.org

2, 3, 7, 10, 34, 54, 234, 402, 1938, 17490, 19590, 209670, 237390, 2933070, 43575630, 696759630, 697240110, 12541643310, 12550832490, 250832355690
Offset: 1

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Comments

The primorial numbers A034386 define their exponential generating function
A034386(x) = sum_{n>=0} A034386(n)*x^n/n! = sum_{n>=0} x^n/A049614(n).
The compositorial numbers A049614 define their exponential generating function
A049614(x) = sum_{n>=0} A049614(n)*x^n/n! = sum_{n>=0} x^n/A034386(n).
Padding the values with A034386(n=0)=A049614(n=0)=1 at the beginning,
two special values of these are
A049614(x=1) = 4.5892461266379861713581024207350707369274... and
A034386(x=1) = 2.9200509773161347120925629171120194680027...

Crossrefs

Programs

  • Mathematica
    f[n_] := If[PrimeQ[n] == True, 1, n] cf[0] = 1; cf[n_Integer?Positive] := cf[n] = f[n]*cf[n - 1] g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] a=Table[cf[n] + p[n], {n, 1, 20}]

Formula

a(n) = A034386(n)+A049614(n).

Extensions

Offset and A-number corrected; comment rewritten - The Assoc Eds of the OEIS, Oct 20 2010

A117754 Triangle T(n, k) = (f(n, 1 + (n mod 3)) + f(k, 1 + (k mod 3))) mod n!, read by rows (see formula for f(n, k)).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 2, 3, 2, 7, 7, 8, 7, 12, 1, 1, 2, 1, 6, 0, 25, 25, 26, 25, 30, 144, 48, 211, 211, 212, 211, 216, 330, 234, 420, 1, 1, 2, 1, 6, 120, 24, 210, 0, 1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456, 211, 211, 212, 211, 216, 330, 234, 420, 40530, 1938, 420
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Examples

			Triangle begins as:
     0;
     0,    0;
     1,    1,    0;
     2,    2,    3,    2;
     7,    7,    8,    7,   12;
     1,    1,    2,    1,    6,    0;
    25,   25,   26,   25,   30,  144,   48;
   211,  211,  212,  211,  216,  330,  234,  420;
     1,    1,    2,    1,    6,  120,   24,  210,     0;
  1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456;
   211,  211,  212,  211,  216,  330,  234,  420, 40530, 1938, 420;
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >;
    function f(n,k)
      if k eq 1 then return A049614(n);
      elif k eq 2 then return A034386(n);
      else return Factorial(n);
      end if;
    end function;
    A117754:= func< n,k | Floor(f(n, 1+(n mod 3))+f( k, 1+(k mod 3))) mod
     Factorial(n) >;
    [A117754(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n],1,n];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    g[n_]:= If[PrimeQ[n], n, 1];
    p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]];  (* A034386 *)
    f[n_, 1]=cf[n]; f[n_, 2]=p[n]; f[n_, 3]=n!;
    T[n_, k_]:= Mod[f[n, 1 + Mod[n, 3]] + f[k, 1 + Mod[k, 3]], n!];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • SageMath
    from sympy import primorial
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
    def A034386(n): return 1 if n == 0 else primorial(n, nth=False)
    def f(n,m):
        if m==1: return A049614(n)
        elif m==2: return A034386(n)
        else: return factorial(n)
    def A117754(n, k): return (f(n, 1+(n%3))+f(k, 1+(k%3)))%factorial(n)
    flatten([[A117754(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023

Formula

T(n, k) = (f(n, 1 + (n mod 3)) + f(k, 1 + (k mod 3))) mod n!, where f(n, 1) = A049614(n), f(n, 2) = A034386(n), and f(n, 3) = n!.

Extensions

Edited by G. C. Greubel, Jul 21 2023

A271387 Numerator of prime(n)#/n!, where prime(n)# is the prime factorial function.

Original entry on oeis.org

1, 2, 3, 5, 35, 77, 1001, 2431, 46189, 1062347, 30808063, 86822723, 3212440751, 10131543907, 435656388001, 20475850236047, 1085220062510491, 3766351981654057, 229747470880897477, 810162134158954261, 57521511525285752531, 4199070341345859934763, 331726556966322934846277
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Examples

			1, 2, 3, 5, 35/4, 77/4, 1001/24, 2431/24, 46189/192, 1062347/1728, 30808063/17280, 86822723/17280, 3212440751/207360, 10131543907/207360, 435656388001/2903040, ...
a(8) = 46189, because prime(8)#/8! = (2*3*5*7*11*13*17*19)/(1*2*3*4*5*6*7*8) = 46189/192.
		

Crossrefs

Cf. A000040, A000142, A000720, A002110, A007947, A034386, A049614 (denominator of prime(n)#/n!), A090586, A135568.

Programs

  • Mathematica
    Table[Numerator[Product[Prime@ k, {k, n}]/n!], {n, 0, 22}] (* Michael De Vlieger, Apr 08 2016 *)
  • PARI
    a(n) = numerator(prod(k=1, n, prime(k))/n!); \\ Michel Marcus, Apr 09 2016

Formula

a(n) = prime(n)#/GCD(prime(n)#, n!), where GCD(a, b) is the greatest common divisor.
a(n) = prime(n)#/prime(pi(n))#, where pi(n) is the number of primes <= n.
a(n) = A002110(n)/A034386(n) = A002110(n)/A002110(A000720(n)) = A002110(n)/A007947(A000142(n)).

A085274 Composite k such that (k!/k#) + 1 is a semiprime, where k# = primorial numbers A034386.

Original entry on oeis.org

6, 10, 21, 22, 24, 25, 27, 30, 39, 48, 52, 57, 65, 87, 94, 110, 114, 124, 156, 161
Offset: 1

Views

Author

Jason Earls, Aug 12 2003

Keywords

Comments

n!/n# is called n compositorial. The actual sequence is (6,7),(10,11),21,(22,23),24,25,27,(30,31),39,48, (52,53),57,65,... where the values in parenthesis yield the same semiprime.
That is, since p!/p# = (p-1)!/(p-1)#, primes never appear in this sequence. - Sean A. Irvine, Jun 30 2020

Examples

			25!/25# + 1 is a product of two primes: 69528040243200001 = 2594807 * 26795071943.
		

Crossrefs

Extensions

More terms from Robert G. Wilson v, Aug 15 2003
Offset corrected and a(19) and a(20) from Sean A. Irvine, Jun 30 2020
Previous Showing 21-30 of 32 results. Next