A373216
Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k)).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3
Offset: 1
A373217
Expansion of Sum_{k>=0} x^(7^k) / (1 - x^(7^k)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2
Offset: 1
-
a[n_] := 1 + IntegerExponent[n, 7]; Array[a, 100] (* Amiram Eldar, May 29 2024 *)
-
a(n) = valuation(n, 7)+1;
A173238
Triangle by columns, A000041 in every column shifted down twice for columns > 0.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 5, 2, 1, 7, 3, 1, 11, 5, 2, 1, 15, 7, 3, 1, 22, 11, 5, 2, 1, 30, 15, 7, 3, 1, 42, 22, 11, 5, 2, 1, 56, 30, 15, 7, 3, 1, 77, 42, 22, 11, 5, 2, 1, 101, 56, 30, 15, 7, 3, 1, 135, 77, 42, 22, 11, 5, 2, 1, 176, 101, 56, 30, 15, 7, 3, 1
Offset: 0
First few rows of the triangle:
1;
1;
2, 1;
3, 1;
5, 2, 1;
7, 3, 1;
11, 5, 2, 1;
15, 7, 3, 1;
22, 11, 5, 2, 1;
30, 15, 7, 3, 1;
42, 22, 11, 5, 2, 1;
56, 30, 15, 7, 3, 1;
77, 42, 22, 11, 5, 2, 1;
101, 56, 30, 15, 7, 3, 1;
135, 77, 42, 22, 11, 5, 2, 1;
176, 101, 56, 30, 15, 7, 3, 1;
...
-
Table[PartitionsP[n - 2 k], {n, 17}, {k, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 23 2021 *)
A307744
A fractal function, related to ruler functions and the Cantor set. a(1) = 0; for m >= 0, a(3m) = 1; for m >= 1, a(3m-1) = a(m-1) + sign(a(m-1)), a(3m+1) = a(m+1) + sign(a(m+1)).
Original entry on oeis.org
1, 0, 2, 1, 3, 0, 1, 2, 3, 1, 4, 2, 1, 0, 4, 1, 2, 0, 1, 3, 2, 1, 4, 3, 1, 2, 4, 1, 5, 2, 1, 3, 5, 1, 2, 3, 1, 0, 2, 1, 5, 0, 1, 2, 5, 1, 3, 2, 1, 0, 3, 1, 2, 0, 1, 4, 2, 1, 3, 4, 1, 2, 3, 1, 5, 2, 1, 4, 5, 1, 2, 4, 1, 3, 2, 1, 5, 3, 1, 2, 5, 1, 6, 2, 1
Offset: 0
As 4 is congruent to 1 modulo 3, a(4) = a(3*1 + 1) = a(1+1) + sign (a(1+1)) = a(2) + sign(a(2)).
As 2 is congruent to -1 modulo 3, a(2) = a(3*1 - 1) = a(1-1) + sign (a(1-1)) = a(0) + sign(a(0)).
As 0 is congruent to 0 modulo 3, a(0) = 1. So a(2) = a(0) + sign(a(0)) = 1 + 1 = 2. So a(4) = a(2) + sign(a(2)) = 2 + 1 = 3.
For any m, the sequence from 9m - 9 to 9m + 9 can be represented by the table below. x, y and z represent distinct integers unless m = 0, in which case x = z = 0. Distinct values are shown in their own column to highlight patterns.
n a(n)
9m-9 1
9m-8 y - starts pattern (9m-8, 9m-4, 9m+4, 9m+8)
9m-7 2
9m-6 1
9m-5 x
9m-4 y
9m-3 1
9m-2 2
9m-1 x - ends pattern (9m-17, 9m-13, 9m-5, 9m-1)
9m 1
9m+1 z - starts pattern (9m+1, 9m+5, 9m+13, 9m+17)
9m+2 2
9m+3 1
9m+4 y
9m+5 z
9m+6 1
9m+7 2
9m+8 y - ends pattern (9m-8, 9m-4, 9m+4, 9m+8)
9m+9 1
For all m, one of x, y, z represents 3 in this table. Note the identical patterns indicated for "x", "y", "z" quadruples, and how the "x" quadruple ends 2 before the "z" quadruple starts, with the "y" quadruple overlapping both. For k >= 1, there are equivalent 2^k-tuples that overlap similarly, notably (3m-2, 3m+2) for all m.
Larger 2^k-tuples look more fractal, more obviously related to the Cantor set. See the pin plot of a(0..162) aligned above an inverted plot of ruler function A051064 in the links. 0's are emphasized with a fainter line running off the top of the plot, partly because 0 is used here as a conventional value and occurs with some properties (such as zero asymptotic density) that could be considered appropriate to the largest rather than smallest value in the sequence.
The table below illustrates the symmetries of scale of this sequence and ruler function A051064. Note the column for this sequence is indexed by k+1, 3k+1, 9k+1, whereas that for A051064 is indexed by k, 3k, 9k.
a(n+1) A051064(n)
n=k, k=16..27 0,1,3,2,1,4,3,1,2,4,1,5 1,1,3,1,1,2,1,1,2,1,1,4
n=3k,k=16..27 0,2,4,3,2,5,4,2,3,5,2,6 2,2,4,2,2,3,2,2,3,2,2,5
n=9k,k=16..27 0,3,5,4,3,6,5,3,4,6,3,7 3,3,5,3,3,4,3,3,4,3,3,6
-
a(n) = if (n==1, 0, my(m=n%3); if (m==0, 1, my(kk = (if (m==1, a(n\3+1), a((n-2)\3)))); kk + sign(kk)));
for (n=0, 100, print1(a(n), ", ")) \\ Michel Marcus, Jul 06 2019
A373279
Expansion of Sum_{k>=0} x^(3^k) / (1 - 3*x^(3^k)).
Original entry on oeis.org
1, 3, 10, 27, 81, 246, 729, 2187, 6571, 19683, 59049, 177174, 531441, 1594323, 4783050, 14348907, 43046721, 129140409, 387420489, 1162261467, 3486785130, 10460353203, 31381059609, 94143181014, 282429536481, 847288609443, 2541865834900, 7625597484987
Offset: 1
-
b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
a(n, k=3) = sumdiv(n, d, d*b(d, k));
A382367
Expansion of 1/( 1 - Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) ).
Original entry on oeis.org
1, 1, 2, 5, 10, 21, 46, 97, 206, 442, 940, 2002, 4272, 9103, 19400, 41360, 88156, 187901, 400534, 853747, 1819782, 3878965, 8268160, 17623888, 37566072, 80073580, 170680002, 363811370, 775478548, 1652963605, 3523358532, 7510180375, 16008251264, 34122231512
Offset: 0
A038510
Composite numbers with smallest prime factor >= 7.
Original entry on oeis.org
49, 77, 91, 119, 121, 133, 143, 161, 169, 187, 203, 209, 217, 221, 247, 253, 259, 287, 289, 299, 301, 319, 323, 329, 341, 343, 361, 371, 377, 391, 403, 407, 413, 427, 437, 451, 469, 473, 481, 493, 497, 511, 517, 527, 529, 533, 539, 551, 553, 559, 581, 583
Offset: 1
- J. H. Silverman, A Friendly Introduction to Number Theory, 2nd Edn. "Appendix A: Factorization of Small Composite Integers", Prentice Hall NY 2001.
-
for n from 1 to 583 do if n^4 mod 30 = 1 and not isprime(n) then print(n)fi od; # Gary Detlefs, Dec 09 2012
-
Select[Range[1000], ! PrimeQ[#] && FactorInteger[#][[1, 1]] >= 7 &] (* T. D. Noe, Mar 16 2013 *)
-
is(n)=gcd(n,30)==1 && !isprime(n) \\ Charles R Greathouse IV, Dec 09 2012
A173239
Triangle by columns, A000041 shifted down thrice, k>=0.
Original entry on oeis.org
1, 1, 2, 3, 1, 5, 1, 7, 2, 11, 3, 1, 15, 5, 1, 22, 7, 2, 30, 11, 3, 1, 42, 15, 5, 1, 56, 22, 7, 2, 77, 30, 11, 3, 1, 101, 42, 15, 5, 1, 135, 56, 22, 7, 2, 176, 77, 30, 11, 3, 1, 231, 101, 42, 15, 5, 1, 297, 135, 56, 22, 7, 2, 385, 176, 77, 30, 11, 3, 1
Offset: 0
First few rows of the triangle =
1;
1;
2;
3, 1;
5, 1;
7, 2;
11, 3, 1;
15, 5, 1;
22, 7, 2;
30, 11, 3, 1;
42, 15, 5, 1;
56, 22, 7, 2;
77, 30, 11, 3, 1;
101, 42, 15, 5, 1;
135, 56, 22, 7, 2;
176, 77, 30, 11, 3, 1;
231, 101, 42, 15, 5, 1;
297, 135, 56, 22, 7, 2;
385, 176, 77, 30, 11, 3, 1;
490, 231, 101, 42, 15, 5, 1;
627, 297, 135, 56, 22, 7, 2;
792, 385, 176, 77, 30, 11, 3, 1;
1002,490, 231, 101, 42, 15, 5, 1;
1255, 627, 297, 135, 56, 22, 7, 2;
1575, 792, 385, 176, 77, 30, 11, 3, 1;
...
A309054
a(1) = 0; for m >= 0, a(3m) = 1; for m >= 1, a(3m-1) = 2*a(m-1), a(3m+1) = 2*a(m+1).
Original entry on oeis.org
1, 0, 2, 1, 4, 0, 1, 2, 4, 1, 8, 2, 1, 0, 8, 1, 2, 0, 1, 4, 2, 1, 8, 4, 1, 2, 8, 1, 16, 2, 1, 4, 16, 1, 2, 4, 1, 0, 2, 1, 16, 0, 1, 2, 16, 1, 4, 2, 1, 0, 4, 1, 2, 0, 1, 8, 2, 1, 4, 8, 1, 2, 4, 1, 16, 2, 1, 8, 16, 1, 2, 8, 1, 4, 2, 1, 16, 4, 1, 2, 16, 1, 32, 2, 1
Offset: 0
As 4 is congruent to 1 modulo 3, a(4) = a(3*1 + 1) = 2*a(1+1) = 2*a(2).
As 2 is congruent to -1 modulo 3, a(2) = a(3*1 - 1) = 2*a(1-1) = 2*a(0).
As 0 is congruent to 0 modulo 3, a(0) = 1. So a(2) = 2*a(0) = 2*1 = 2. So a(4) = 2*a(2) = 2*2 = 4.
A327726
Expansion of Product_{i>=1, j>=0} (1 + x^(i * 3^j)).
Original entry on oeis.org
1, 1, 1, 3, 3, 4, 7, 8, 10, 17, 20, 24, 36, 42, 52, 72, 85, 103, 139, 164, 197, 256, 301, 361, 456, 536, 637, 794, 930, 1098, 1347, 1571, 1848, 2235, 2600, 3042, 3646, 4228, 4922, 5845, 6754, 7835, 9229, 10633, 12284, 14382, 16519, 19013, 22127, 25339, 29073
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[(1 + x^k)^IntegerExponent[3 k, 3], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d IntegerExponent[3 d, 3], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(1+valuation(k, 3))))} \\ Andrew Howroyd, Sep 23 2019
Comments