cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 136 results. Next

A257278 Prime powers p^m with p <= m.

Original entry on oeis.org

4, 8, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 823543, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 5764801, 8388608, 9765625
Offset: 1

Views

Author

M. F. Hasler, Apr 28 2015

Keywords

Comments

Might be called "high" powers of primes. Motivated by challenges for which low powers of large primes provide somewhat trivial solutions, cf. A257279. The definition also avoids the question of the whether prime itself is to be considered as a prime power or not, cf. A000961 vs. A025475. In view of the condition p <= n, up to 10^10, only powers of the primes 2, 3, 5 and 7 (namely, less than 10) can occur.

Crossrefs

Cf. A000040, A051674 (subsequence).
Subsequence of A122494 and A192135 (p < m, subsequence).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a257278 n = a257278_list !! (n-1)
    a257278_list = f (singleton (4, 2)) 27 (tail a000040_list) where
       f s pp ps@(p:ps'@(p':_))
         | qq > pp   = pp : f (insert (pp * p, p) s) (p' ^ p') ps'
         | otherwise = qq : f (insert (qq * q, q) s') pp ps
         where ((qq, q), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 01 2015
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    L=List();lim=10;forprime(p=1,lim,for(n=p,lim*log(lim)\log(p),listput(L,p^n)));listsort(L);L
    

Formula

a(n) = A257572(n) ^ A257573(n). - Reinhard Zumkeller, May 01 2015
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^(p-1)*(p-1)) = 0.55595697220270661763... - Amiram Eldar, Oct 24 2020

A381205 a(n) is the cardinality of the set of bases and exponents (including exponents = 1) in the prime factorization of n.

Original entry on oeis.org

0, 2, 2, 1, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 1, 3, 2, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 4, 2, 4, 2, 3, 4, 3, 2, 4, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 2, 4, 2, 3, 4, 2, 3, 4, 2, 3, 3, 4, 2, 2, 2, 3, 4, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 3, 3, 4, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Feb 17 2025

Keywords

Comments

The prime factorization of 1 is the empty set, so a(1) = 0 by convention.

Examples

			a(16) = 2 because 12 = 2^3, the set of these bases and exponents is {2, 3} and its size is 2.
a(31500) = 5 because 31500 = 2^2*3^2*5^3*7^1, the set of these bases and exponents is {1, 2, 3, 5, 7} and its size is 5.
		

Crossrefs

Cf. A051674 (positions of ones), A381201, A381202, A381203, A381204, A381212.

Programs

  • Maple
    a:= n-> nops({map(i-> i[], ifactors(n)[2])[]}):
    seq(a(n), n=1..90);  # Alois P. Heinz, Feb 18 2025
  • Mathematica
    A381205[n_] := If[n == 1, 0, Length[Union[Flatten[FactorInteger[n]]]]];
    Array[A381205, 100]
  • PARI
    a(n) = my(f=factor(n)); #setunion(Set(f[,1]), Set(f[,2])); \\ Michel Marcus, Feb 18 2025
    
  • Python
    from sympy import factorint
    def a(n): return len(set().union(*(set(pe) for pe in factorint(n).items())))
    print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Feb 18 2025

A129286 a(n) = A129152(n) / 5^5, where A129152 is the trajectory of 5^6 under A003415, the arithmetic derivative.

Original entry on oeis.org

5, 6, 11, 12, 28, 60, 152, 388, 780, 2036, 4076, 8156, 16316, 32636, 66232, 169612, 339228, 1244808, 4856004, 14568120, 56648484, 190791072, 866874960, 4084880112, 16342519392, 73816544592, 305811402048, 1732931293824, 10145637246528, 52715820454848
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Crossrefs

Programs

  • Haskell
    a129286 n = a129286_list !! n
    a129286_list = iterate a129283 5  -- Reinhard Zumkeller, Nov 01 2013

Formula

a(n+1) = A129283(a(n)), a(0) = 5.
a(n) = A090635(n+3) / 4, i.e., the trajectory of 20 under A003415, divided by the common factor 4. - M. F. Hasler, Nov 27 2019

A007965 a(n) = n^prime(n) - prime(n)^n.

Original entry on oeis.org

-1, -1, 118, 13983, 48667074, 13055867207, 232630103648534, 144115171092292831, 8862938117851348434466, 99999999999999579292766699799, 191943424957750455095669944886980, 8505622499821102144569548732108989899311
Offset: 1

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

Examples

			a(3) = 3^5 - 5^3 = 243 - 125 = 118.
a(4) = 16384 - 2401 = 13983.
		

Crossrefs

Programs

Extensions

More terms from Labos Elemer, Jul 09 2001

A125136 Triangle read by rows in which row n gives list of prime factors of p^p + 1 where p = prime(n).

Original entry on oeis.org

5, 2, 2, 7, 2, 3, 521, 2, 2, 2, 113, 911, 2, 2, 3, 23, 89, 199, 58367, 2, 7, 13417, 20333, 79301, 2, 3, 3, 45957792327018709121, 2, 2, 5, 108301, 1049219, 870542161121, 2, 2, 2, 3, 47, 139, 1013, 1641281, 52626071, 1522029233, 2, 3, 5, 233, 6864997
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Comments

Product over the n-th row of the table is A051674(n) + 1. The number of elements in the n-th row is A115973(n). - R. J. Mathar, Jan 22 2007
(p + 1) divides p^p + 1 for odd prime p. - Alexander Adamchuk, Jan 22 2007

Examples

			Rows read
  5;
  2, 2, 7;
  2, 3, 521;
  2, 2, 2, 113, 911;
  2, 2, 3, 23, 89, 199, 58367;
  2, 7, 13417, 20333, 79301;
  2, 3, 3, 45957792327018709121;
  2, 2, 5, 108301, 1049219, 870542161121;
  2, 2, 2, 3, 47, 139, 1013, 1641281, 52626071, 1522029233;
  2, 3, 5, 233, 6864997, 9487923853, 5639663878716545087233;
  2, 2, 2, 2, 2, 373, 1613, 62869, 145577, 35789156484227, 2706690202468649;
  etc.
		

Crossrefs

Cf. A007571 = largest factor of n^n + 1.

Programs

  • Maple
    pfs := proc(n) local ifs,a,e,b ; ifs := ifactors(n)[2] ; a := [] ; for b from 1 to nops(ifs) do for e from 1 to op(2,op(b,ifs)) do a := [op(a),op(1,op(b,ifs))] ; od ; od ; RETURN(a) ; end; A125136 := proc(nmax) local a,p,n,pp ; a := [] ; p := 2 ; while nops(a) < nmax do a := [op(a),op(pfs(p^p+1))] ; p := nextprime(p) ; od ; RETURN(a) ; end; A125136(40) ; # R. J. Mathar, Jan 22 2007
  • Mathematica
    lpf[n_]:=Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]; lpf/@(#^#+1&/@ Prime[Range[10]])//Flatten (* Harvey P. Dale, Oct 18 2020 *)

Extensions

More terms from Alexander Adamchuk and R. J. Mathar, Jan 22 2007

A129252 Smallest prime factor p of n such that p^p is a divisor of n, a(n)=1 if no such factor exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Examples

			For n = 108 = 2^2 * 3^3, it is 2 that is the smallest prime factor p satisfying p^p | 108, thus a(108) = 2.
		

Crossrefs

Cf. A020639, A048103 (positions of 1's), A008578, A051674, A129251, A359550, A368333, A380528.
Differs from A327936 for the first time at n=108.

Programs

  • Mathematica
    Array[If[IntegerQ@ #, #, 1] &@ First@ SelectFirst[FactorInteger[#], #1 <= #2 & @@ # &] &, 120] (* Michael De Vlieger, Oct 01 2019 *)
  • PARI
    A129252(n) = { my(f = factor(n)); for(k=1, #f~, if(f[k, 2]>=f[k, 1], return(f[k, 1]))); (1); }; \\ Antti Karttunen, Oct 01 2019
    
  • PARI
    A129252(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(p)); if(pp > n, return(1))); }; \\ Antti Karttunen, Feb 09 2025

Formula

a(n) = 1 iff A129251(n) = 0.
a(A048103(n)) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p^p) + Sum_{p prime} ((1/p^(p-1)) * Product_{primes q < p} (1-1/q^q)) = 1.30648526015949409005... . - Amiram Eldar, Nov 07 2022

Extensions

Data section extended to a(120) by Antti Karttunen, Oct 01 2019

A129284 a(n) = A129150(n) / 4, where A129150(n) = n-th arithmetic derivative of 2^3.

Original entry on oeis.org

2, 3, 4, 8, 20, 44, 92, 188, 380, 856, 2148, 5024, 17616, 58768, 176320, 755904, 3305920, 13885184, 69634816, 348174336, 2385273856, 14652403712, 102566830080, 849285738496, 6035962949632, 44017806979072, 308166534991872, 2380768960708608, 23410894780694528
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Comments

In general, the trajectory of p^(p+1) under A003415 has a common factor p^p, and divided by p^p it gives the trajectory of p under A129283: n -> n + n'. Here we have the case p = 2, see A129151 and A129152 for p = 3 and 5. - M. F. Hasler, Nov 28 2019

Crossrefs

Programs

Formula

a(n+1) = A129283(a(n)), a(0) = 2.

Extensions

a(18)-a(28) from Paolo P. Lava, Apr 16 2012
Edited by M. F. Hasler, Nov 27 2019

A129285 a(n) = A129151(n) / 27.

Original entry on oeis.org

3, 4, 8, 20, 44, 92, 188, 380, 856, 2148, 5024, 17616, 58768, 176320, 755904, 3305920, 13885184, 69634816, 348174336, 2385273856, 14652403712, 102566830080, 849285738496, 6035962949632, 44017806979072, 308166534991872, 2380768960708608, 23410894780694528
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Crossrefs

Cf. A129284 (essentially the same), A129283 (n + n'), A129286, A051674, A129150, A090636 (trajectory of 15 under arithmetic derivative A003415).

Programs

Formula

a(n+1) = A129283(a(n)), a(0) = 3.
a(n) = A129284(n+1). - Eric M. Schmidt, Oct 22 2013
Thus a(n) = A129150(n+1) / 4 = A090636(n+3) / 4. - M. F. Hasler, Nov 27 2019

A383300 Numbers k such that primorial base expansion of k has the primorial base expansion of k' as its suffix, where k' stands for the arithmetic derivative of k (A003415).

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
Offset: 1

Views

Author

Antti Karttunen, May 15 2025

Keywords

Comments

a(n) = A348283(n) for n=1 and n=3..334432. a(334433) = 4784261, which is not present in A348283 (see examples). - R. J. Mathar and Antti Karttunen, May 16 2025

Examples

			0 is a term as A003415(0) = 0.
1 is a term as A003415(1) = 0, whose primorial base expansion is here understood as an empty sequence of digits, thus it is a suffix of A049345(1) = 1.
3, like all odd primes, is a term as A003415(3) = 1, with A049345(3) = 11 and A049345(1) = 1.
4 and 27 are terms as they are in A051674 (the nonzero fixed points of A003415).
4784261 is a term as A003415(4784261) = 189671, with A049345(4784261) = 96411121 and A049345(189671) = 6411121. 4784261 is the first term > 1 of this sequence that is not in A348283. See more examples in A383301.
		

Crossrefs

Disjoint union of {1}, A348283\{2} and A383301.
Cf. A006005, A051674 (other subsequences).
Subsequence of A383299.
Cf. also A383933.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA383300(n) = if(n<2, 1, my(p=2, k=A003415(n)); while(k, if((k%p)!=(n%p), return(0)); n = n\p; k = k\p; p = nextprime(1+p)); (1));
    
  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); };
    isA383300(n) = { my(ad=A003415(n)); (n%A002110(A235224(ad))==ad); };

Formula

{k such that A003415(k) is equal to k modulo A002110(A235224(A003415(k)))}.

A082872 a^n + b^n + c^n + ..., where a*b*c* ... is the prime factorization of n.

Original entry on oeis.org

1, 4, 27, 32, 3125, 793, 823543, 768, 39366, 9766649, 285311670611, 539633, 302875106592253, 678223089233, 30531927032, 262144, 827240261886336764177, 775103122, 1978419655660313589123979, 95367433737777, 558545874543637210
Offset: 1

Views

Author

Jason Earls, May 25 2003

Keywords

Comments

n*log_10(2) + log_10(log_2(n)) <= length(a(n)) <= n*log_10(n). - Martin Renner, Jan 18 2012
If m = p^k is a power of a prime then a(n) = sum(p^m,i=1..k) = k*p^m is composite. - Martin Renner, Jan 31 2013

Examples

			a(6) = a(2*3) = 2^6 + 3^6 = 793.
a(8) = a(2*2*2) = 2^8 + 2^8 + 2^8 = 768.
		

Crossrefs

Programs

  • Maple
    A082872 := proc(n)
        local ps;
        if n= 1 then
            1;
        else
            ps := ifactors(n)[2] ;
            add( op(2,p)*op(1,p)^n,p=ps) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2014
  • Mathematica
    Table[f = FactorInteger[n]; Total[Flatten[Table[Table[f[[i, 1]], {f[[i, 2]]}], {i, Length[f]}]]^n], {n, 25}] (* T. D. Noe, Feb 01 2013 *)
    Table[Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]^n],{n,30}] (* Harvey P. Dale, Jun 10 2016 *)
Previous Showing 41-50 of 136 results. Next