cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A138066 Least k > 0 such that (2n-1)^k + 2 is prime, or 0 if no such number exists.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 11, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 113, 0, 1, 7, 0, 1, 1, 0, 3, 1, 0, 1, 1, 0, 12, 1, 0, 1, 3, 0, 1, 255, 0, 8, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 2, 15, 0, 2, 1, 0, 1, 23, 0, 1, 1, 0, 4, 3, 0, 1, 1, 0, 3, 1, 0, 136, 1, 0, 1
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2008

Keywords

Comments

a(3n+1) = 0 for n > 0.
a(84) > 100000. - Ray Chandler, Aug 10 2011

Crossrefs

Cf. A084713 (smallest prime of the form (2n-1)^k + 2, or 0 if no such number exists).
Cf. A138067 (least k > 1 such that (2n-1)^k + 2 is prime, or 0 if no such number exists).
Cf. A051783 (k such that 3^k + 2 is prime).
Cf. A087885 (k such that 5^k + 2 is prime).

A080443 Largest prime factor of 3^n+2.

Original entry on oeis.org

3, 5, 11, 29, 83, 7, 43, 199, 6563, 127, 59051, 25307, 48313, 63773, 4782971, 14348909, 119243, 335429, 23203, 10613, 60089, 1224149, 795323, 919, 282429536483, 1583717027, 2541865828331, 693236134999, 174632003473
Offset: 0

Views

Author

Hugo Pfoertner, Mar 21 2003

Keywords

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(3^n+2)):n in [0..28]]; // Marius A. Burtea, Jul 12 2019
  • Mathematica
    Table[FactorInteger[3^n+2][[-1,1]],{n,0,30}] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    for(n=0,28,f=factor(3^n+2);print1(f[#f[,1],1],", ")) \\ Hugo Pfoertner, Jul 12 2019
    

Extensions

Corrected by T. D. Noe, Nov 15 2006

A057738 Primes p such that 3^p + 2 is prime.

Original entry on oeis.org

2, 3, 139
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 29 2000

Keywords

Comments

Primes in A051783. - Jens Kruse Andersen, Jun 29 2014
No further terms < 1753089 using A051783. - Michael S. Branicky, May 14 2025

Examples

			a(2) = 3 because 3^3 + 2 = 29 is prime.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 139, p. 48, Ellipses, Paris 2008.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(3^p+2)]; // Vincenzo Librandi, Jun 30 2014
  • Mathematica
    For[n = 1, n < 700, n++, If[PrimeQ[3^Prime[n] + 2], Print[Prime[n]]]] (* Stefan Steinerberger, Mar 18 2006 *)

A081715 Numbers n such that 3^n+2 is a semiprime.

Original entry on oeis.org

6, 7, 11, 12, 20, 27, 28, 40, 44, 60, 71, 84, 108, 118, 145, 156, 160, 211, 263, 295, 296, 304, 306, 316, 351, 474, 488, 495
Offset: 1

Views

Author

Hugo Pfoertner, Apr 04 2003

Keywords

Comments

a(29) >= 514. - Hugo Pfoertner, Jul 24 2019
531, 562, 676, 760, 807, 866, 1059, 1502, 1659, 2539, 2656, 3070, 3163, 4014, 5736, 5966, 6680, 6745, 7192, 7861, 8104, 9703, 10014 are terms of this sequence. - Chai Wah Wu, Oct 18 2019

Examples

			a(1)=6 because 3^6+2=731=17*43, a(2)=7 because 3^7+2=2189=11*199.
a(1)=6 because 3^6+2=731=17*43
a(2)=7 because 3^7+2=2189=11*199
a(3)=11 because 3^11+2=177149=7*25307
a(4)=12 because 3^12+2=531443=11*48313
a(5)=20 because 3^20+2=3486784403=58027*60089
a(6)=27 because 3^27+2=7625597484989=11*693236134999
a(7)=28 because 3^28+2=22876792454963=131*174632003473
a(8)=40 because 3^40+2=12157665459056928803=1170408739*10387538177
a(9)=44 because 3^44+2=984770902183611232883=21577*45639843452917979
a(10)=60 because 3^60+2=42391158275216203514294433203=89*476305149159732623756117227
a(11)=71 because 3^71+2=7509466514979724803946715958257549=7*1072780930711389257706673708322507
a(12)=84 because 3^84+2=11972515182562019788602740026717047105683=13483993*887905769645684315365837109728331
a(13)=108 because 3^108+2=3381391913522726342930221472392241170198527451848563=671633*5034582746116891729456744192724659405059798211
a(14)=118 because 3^118+2=199667811101603467823686647723289448859052847504205678491=17*11745165358917851048452155748428791109356049853188569323
a(15)=145 because 3^145+2=1522586358169246802159262479225089070726226750574991661790882326344645=5*304517271633849360431852495845017814145245350114998332358176465268929
a(16)=156 because 3^156+2=269721605590607563262106870407286853611938890184108047911269431464974473523=21883136019044570108827*12325546272521124629737118652366725946328428459583049
a(17)=160 because 3^160+2=21847450052839212624230656502990235142567050104912751880812823948662932355203=19*1149865792254695401275297710683696586450897373942776414779622313087522755537
a(18)=211 because 3^211+2=47052721287394587764057094854672253553918218437190874778408030747195017485692977810906266281547645149=97*485079600900975131588217472728579933545548643682380152354721966465928015316422451658827487438635517
a(19)=263 because 3^263+2=304011485348815530556923313708989269910796626718253224787639751028488890841299195402970869140037716024202112537180443065484429=7*43430212192687932936703330529855609987256660959750460683948535861212698691614170771852981305719673717743158933882920437926347
a(20)=295 because 3^295+2=563339419994190847700930153835754386693266237141306322927902016783411511018514718493004963603658195013376479179415613344911575031957595780109=3535513*159337391771488564092659298335419608609349261943402929908022404891004929417177851840172830252259911083165718575894251653129708484159893
		

Crossrefs

Programs

  • PARI
    for(n=1, 295, if(bigomega(3^n+2)==2, print1(n", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007

Extensions

2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007
More terms from Sean A. Irvine, Mar 21 2010

A134753 Numbers k such that 3^(2*k-1) + 2 is prime.

Original entry on oeis.org

1, 2, 8, 32, 62, 70, 118, 122, 158, 182, 196, 566, 752, 3602, 21896, 22768, 53072
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2008

Keywords

Comments

From Enrique Pérez Herrero, Jul 29 2010: (Start)
With: f(n)=3^(2n-1)+2, the non-primality of f(n) is settled when:
if 2 does not divide n, 5 divides f(n) (n>1)
if 3 divides n, 7 divides f(n)
if 5 divides n-4, 11 divides f(n)
if 14 divides n-2, 29 divides f(n)
if 15 divides n-5, 31 divides f(n). (End)

References

Crossrefs

Programs

Formula

({odd terms in A051783} + 1)/2.

Extensions

Typo in prime search corrected Enrique Pérez Herrero, Jul 31 2010
a(15)-a(17) from A051783 by Ray Chandler, Aug 06 2011

A138067 Least k > 1 such that (2n-1)^k + 2 is prime, or 0 if no such number exists.

Original entry on oeis.org

2, 2, 3, 0, 2, 5, 0, 2, 105, 0, 2, 11, 0, 5, 3, 0, 2, 15, 0, 2, 9, 0, 2, 113, 0, 5, 7, 0, 2, 27, 0, 3, 3, 0, 3, 3, 0, 12, 61, 0, 2, 3, 0, 4, 255, 0, 8, 63, 0, 2, 9, 0, 2, 3473, 0, 2, 3, 0, 2, 15, 0, 2, 87, 0, 3, 23, 0, 36, 1861, 0, 4, 3, 0, 2, 5, 0, 3, 7, 0, 136, 425, 0, 11
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2008

Keywords

Comments

a(3n+1) = 0 for n > 0.
a(84) > 100000. - Ray Chandler, Aug 10 2011

Crossrefs

Cf. A084713 (smallest prime of the form (2n-1)^k + 2, or 0 if no such number exists).
Cf. A138066 (least k > 0 such that (2n-1)^k + 2 is prime, or 0 if no such number exists).
Cf. A051783 (k such that 3^k + 2 is prime).
Cf. A087885 (k such that 5^k + 2 is prime).

Extensions

a(54)-a(83) from Donovan Johnson, Oct 29 2008

A301919 a(n) is the least value of k for which A301918(n) divides 3^k+3.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 15, 16, 10, 5, 22, 27, 6, 12, 7, 40, 45, 25, 51, 18, 57, 64, 69, 70, 75, 26, 40, 82, 87, 9, 99, 100, 106, 112, 117, 61, 129, 135, 16, 141, 142, 147, 18, 159, 166, 85, 88, 177, 62, 94, 190, 195, 100, 201, 103, 74, 225, 115, 231, 232, 244, 84
Offset: 1

Views

Author

Luke W. Richards, Mar 28 2018

Keywords

Comments

This can be used to identify P+1 values to primality test potential primes P of the form 3^k+2, i.e., A051783.

Examples

			All values of 3^k+3 are multiples of 2, so 3^0+3 = 4 is the least value of k which is a multiple of 2.
a(10) = 5 and A301918(10) = 41 so 3^5+3 = 246 is the first multiple of 41 which can be written in the form 3^k+3.
		

Crossrefs

Formula

a(n) = A301917(n-1) + 1 for n > 2.

A305237 Numbers m such that m, m+1 and m+2 all have primitive roots.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 17, 25, 81, 241
Offset: 1

Views

Author

Jianing Song, Jun 04 2018

Keywords

Comments

Start of run of 3 consecutive numbers in A033948.
The next term is 3^541 - 2, which is too large to be included here. No more terms below 3^100000, or approximately 1.33*10^47712.
There is a multiple of 4 in every four consecutive positive integers and it clearly has no primitive roots if it is larger than 4. Again, there is a multiple of 3 in every three consecutive positive integers, so it must be a power of 3 or two times a power of 3, and the other two numbers must be odd prime powers or two times odd prime powers.
According to Pillai's conjecture, there're only finitely many solutions to |3^a - p^b| = 2, |3^a - 2*p^b| = 1, |p^a - 2*3^b| = 1 with a,b >= 2, p odd primes (no solution other than 3^3 - 5^2 = 2, 3^5 - 2*11^2 = 1 below 3^100000). So beyond (25, 26, 27) and (241, 242, 243), it's very likely that all three consecutive numbers with primitive roots are of the form (3^i, 3^i + 1, 3^i + 2), (3^j - 2, 3^j - 1, 3^j), (2*3^k - 1, 2*3^k, 2*3^k + 1) such that (3^i + 1)/2, 3^i + 2, 3^j - 2, (3^j - 1)/2, 2*3^k - 1, 2*3^k + 1 are primes, which only produces one more solution (3^541 - 2, 3^541 - 1, 3^541) below 3^1000000.

Examples

			81, 82, 83 all have primitive roots (in fact, their least common primitive root is 47), so 81 is a term.
Note that A014224 and A028491 have a term 541 in common, so 3^541 - 2, 3^541 - 1 and 3^541 all have primitive roots, so 3^541 - 2 is a term.
		

Crossrefs

A132829 Numbers k such that 3^k + 2 is not prime.

Original entry on oeis.org

5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Artur Jasinski, Sep 03 2007

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..100]| not IsPrime(3^n+2)]; // Vincenzo Librandi, Jan 28 2011
  • Mathematica
    a = {}; c = 3^x + 2; Do[If[PrimeQ[c],0, AppendTo[a, x]], {x, 0, 100}]; a
    Select[Range[90],CompositeQ[3^#+2]&] (* Harvey P. Dale, Sep 25 2021 *)

A132830 Numbers of the form 3^n+2 which are not primes.

Original entry on oeis.org

245, 731, 2189, 19685, 177149, 531443, 1594325, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 847288609445, 7625597484989, 22876792454963, 68630377364885, 205891132094651
Offset: 1

Views

Author

Artur Jasinski, Sep 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; c = 3^x + 2; Do[If[PrimeQ[c],0, AppendTo[a, c]], {x, 0, 100}]; a (*Artur Jasinski*)
    Select[3^Range[0,30]+2,!PrimeQ[#]&] (* Harvey P. Dale, Nov 21 2012 *)
Previous Showing 31-40 of 46 results. Next