cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A255185 26-gonal numbers: a(n) = n*(12*n-11).

Original entry on oeis.org

0, 1, 26, 75, 148, 245, 366, 511, 680, 873, 1090, 1331, 1596, 1885, 2198, 2535, 2896, 3281, 3690, 4123, 4580, 5061, 5566, 6095, 6648, 7225, 7826, 8451, 9100, 9773, 10470, 11191, 11936, 12705, 13498, 14315, 15156, 16021, 16910, 17823, 18760
Offset: 0

Views

Author

Luciano Ancora, Apr 04 2015

Keywords

Comments

See comments in A255184.
Also star 13-gonal number: a(n) = A051865(n) + 13*A000217(n-1).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (24th row of the table).

Crossrefs

Cf. similar sequences listed in A255184.

Programs

  • Magma
    [n*(12*n-11): n in [0..50]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    Table[n (12 n - 11), {n, 50}]
    PolygonalNumber[26,Range[0,50]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,26},50] (* Harvey P. Dale, Feb 02 2017 *)
  • PARI
    a(n)=n*(12*n-11) \\ Charles R Greathouse IV, Jun 17 2017
    
  • SageMath
    [n*(12*n-11) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^3.
a(n) = A000217(n) + 23*A000217(n-1).
Product_{n>=2} (1 - 1/a(n)) = 12/13. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 12*x^2). - Nikolaos Pantelidis, Feb 05 2023

A152740 11 times triangular numbers.

Original entry on oeis.org

0, 11, 33, 66, 110, 165, 231, 308, 396, 495, 605, 726, 858, 1001, 1155, 1320, 1496, 1683, 1881, 2090, 2310, 2541, 2783, 3036, 3300, 3575, 3861, 4158, 4466, 4785, 5115, 5456, 5808, 6171, 6545, 6930, 7326, 7733, 8151, 8580, 9020, 9471, 9933, 10406, 10890, 11385, 11891
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ... and the same line from 0, in the direction 0, 33, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Axis perpendicular to A195149 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 5*n to 6*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

Formula

a(n) = 11*n*(n+1)/2 = 11*A000217(n).
a(n) = a(n-1) + 11*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
a(n) = A069125(n+1) - 1. - Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 27 2013: (Start)
G.f.: 11*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2, a(0)=0, a(1)=11, a(2)=33.
a(n) = A218530(11*n+10).
a(n) = A211013(n)+n = A022269(n)+5*n = A022268(n)+6*n = A180223(n)+9*n = A051865(n)+10*n. (End)
a(n) = Sum_{i=5*n..6*n} i. - Wesley Ivan Hurt, Dec 22 2015
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/11.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/11.
Product_{n>=1} (1 - 1/a(n)) = -(11/(2*Pi))*cos(sqrt(19/11)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (11/(2*Pi))*cos(sqrt(3/11)*Pi/2). (End)
E.g.f.: 11*exp(x)*x*(2 + x)/2. - Elmo R. Oliveira, Dec 25 2024

A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.

Original entry on oeis.org

0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.

Crossrefs

Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.

Programs

Formula

G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019

A195528 Integers n that are k-gonal for precisely 4 distinct values of k, where k >= 3.

Original entry on oeis.org

36, 45, 66, 81, 105, 120, 153, 171, 190, 196, 210, 261, 280, 351, 378, 396, 400, 405, 406, 456, 465, 477, 484, 496, 532, 576, 585, 606, 621, 630, 645, 666, 715, 726, 729, 736, 741, 742, 765, 780, 784, 801, 855, 876, 891, 910, 945, 960, 981, 1015, 1045, 1056
Offset: 1

Views

Author

Ant King, Sep 21 2011

Keywords

Comments

See A177025 for number of ways a number can be represented as a polygonal number.

Examples

			36 is in the sequence because it is a triangular number (A000217), a square number (A000290), a tridecagonal number (A051865), and a 36-gonal number.
		

Crossrefs

Programs

  • Mathematica
    data1=Reduce[1/2 n (n(k-2)+4-k)==# && k>=3 && n>0, {k,n}, Integers]&/@Range[1056]; data2=If[Head[#]===And, 1, Length[#]] &/@data1; data3=DeleteCases[Table[If[data2[[k]]==4, k], {k, 1, Length[data2]}], Null]
  • Python
    A195528_list = []
    for m in range(1,10**4):
        n, c = 3, 0
        while n*(n+1) <= 2*m:
            if not 2*(n*(n-2) + m) % (n*(n - 1)):
                c += 1
                if c > 3:
                    break
            n += 1
        if c == 3:
            A195528_list.append(m) # Chai Wah Wu, Jul 28 2016

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A264842 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 13-gonal: (11n^2 - 9n)/2.

Original entry on oeis.org

1, 3, 36, 54765, 123152388, 374848814886363636, 85794018663817263665487289502938826, 107072047880615405294526336549204869795454545454545454545454545454545466
Offset: 1

Views

Author

Anders Hellström, Nov 26 2015

Keywords

Examples

			1, 13, 1336, 133654765 are 13-gonal.
		

Crossrefs

Programs

  • PARI
    tridecagonal(n)=ispolygonal(n, 13)
    first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!tridecagonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))

Extensions

More terms from Jon E. Schoenfield, Nov 27 2015

A317302 Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, -3, 0, 1, 2, 0, -8, 0, 1, 3, 3, -2, -15, 0, 1, 4, 6, 4, -5, -24, 0, 1, 5, 9, 10, 5, -9, -35, 0, 1, 6, 12, 16, 15, 6, -14, -48, 0, 1, 7, 15, 22, 25, 21, 7, -20, -63, 0, 1, 8, 18, 28, 35, 36, 28, 8, -27, -80, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, -35, -99, 0, 1, 10, 24, 40, 55, 66
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2018

Keywords

Comments

Note that the formula gives several kinds of numbers, for example:
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the nonnegative numbers.
For n >= 3, row n gives the n-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------------
n\k  Numbers       Seq. No.   0   1   2   3   4    5    6    7    8
------------------------------------------------------------------------
0    ............ (A258837):  0,  1,  0, -3, -8, -15, -24, -35, -48, ...
1    ............ (A080956):  0,  1,  1,  0, -2,  -5,  -9, -14, -20, ...
2    Nonnegatives  A001477:   0,  1,  2,  3,  4,   5,   6,   7,   8, ...
3    Triangulars   A000217:   0,  1,  3,  6, 10,  15,  21,  28,  36, ...
4    Squares       A000290:   0,  1,  4,  9, 16,  25,  36,  49,  64, ...
5    Pentagonals   A000326:   0,  1,  5, 12, 22,  35,  51,  70,  92, ...
6    Hexagonals    A000384:   0,  1,  6, 15, 28,  45,  66,  91, 120, ...
7    Heptagonals   A000566:   0,  1,  7, 18, 34,  55,  81, 112, 148, ...
8    Octagonals    A000567:   0,  1,  8, 21, 40,  65,  96, 133, 176, ...
9    9-gonals      A001106:   0,  1,  9, 24, 46,  75, 111, 154, 204, ...
10   10-gonals     A001107:   0,  1, 10, 27, 52,  85, 126, 175, 232, ...
11   11-gonals     A051682:   0,  1, 11, 30, 58,  95, 141, 196, 260, ...
12   12-gonals     A051624:   0,  1, 12, 33, 64, 105, 156, 217, 288, ...
13   13-gonals     A051865:   0,  1, 13, 36, 70, 115, 171, 238, 316, ...
14   14-gonals     A051866:   0,  1, 14, 39, 76, 125, 186, 259, 344, ...
15   15-gonals     A051867:   0,  1, 15, 42, 82, 135, 201, 280, 372, ...
...
		

Crossrefs

Column 0 gives A000004.
Column 1 gives A000012.
Column 2 gives A001477, which coincides with the row numbers.
Main diagonal gives A060354.
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the same as column 2.
For n >= 3, row n gives the n-gonal numbers: A000217 (n=3), A000290 (n=4), A000326 (n=5), A000384 (n=6), A000566 (n=7), A000567 (n=8), A001106 (n=9), A001107 (n=10), A051682 (n=11), A051624 (n=12), A051865 (n=13), A051866 (n=14), A051867 (n=15), A051868 (n=16), A051869 (n=17), A051870 (n=18), A051871 (n=19), A051872 (n=20), A051873 (n=21), A051874 (n=22), A051875 (n=23), A051876 (n=24), A255184 (n=25), A255185 (n=26), A255186 (n=27), A161935 (n=28), A255187 (n=29), A254474 (n=30).
Cf. A303301 (similar table but with generalized polygonal numbers).

Formula

T(n,k) = A139600(n-2,k) if n >= 2.
T(n,k) = A139601(n-3,k) if n >= 3.

A008729 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+11} floor(j/11).
a(n-11) = (1/2)*floor(n/11)*(2*n - 9 - 11*floor(n/11)). (End)
a(n) = A218530(n+11). - Philippe Deléham, Apr 03 2013
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 12.
G.f.: 1/(1 - 2*x + x^2 - x^11 + 2*x^12 - x^13) = 1/((1-x)^3 *(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A055268 a(n) = (11*n + 4)*C(n+3, 3)/4.

Original entry on oeis.org

1, 15, 65, 185, 420, 826, 1470, 2430, 3795, 5665, 8151, 11375, 15470, 20580, 26860, 34476, 43605, 54435, 67165, 82005, 99176, 118910, 141450, 167050, 195975, 228501, 264915, 305515, 350610, 400520, 455576, 516120, 582505, 655095, 734265
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

Comments

a(n) is the number of compositions of n when there are 9 types of each natural number. - Milan Janjic, Aug 13 2010
Convolution of A000027 with A051865 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Partial sums of A050441.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

  • GAP
    List([0..30], n-> (11*n+4)*Binomial(n+3,3)/4 ); # G. C. Greubel, Jan 17 2020
  • Magma
    /* A000027 convolved with A051865 (excluding 0): */ A051865:=func; [&+[(n-i+1)*A051865(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
    
  • Maple
    seq( (11*n+4)*binomial(n+3,3)/4, n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[11*Binomial[n+4,4] -10*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    a(n) = (11*n+4)*binomial(n+3, 3)/4; \\ Michel Marcus, Sep 07 2017
    
  • Python
    A055268_list, m = [], [11, 1, 1, 1, 1]
    for _ in range(10**2):
        A055268_list.append(m[-1])
        for i in range(4):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [(11*n+4)*binomial(n+3,3)/4 for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

G.f.: (1 + 10*x)/(1-x)^5. - R. J. Mathar, Oct 26 2011
From G. C. Greubel, Jan 17 2020:(Start)
a(n) = 11*binomial(n+4,4) - 10*binomial(n+3,3).
E.g.f.: (24 + 336*x + 432*x^2 + 136*x^3 + 11*x^4)*exp(x)/24. (End)

A226491 a(n) = n*(21*n-17)/2.

Original entry on oeis.org

0, 2, 25, 69, 134, 220, 327, 455, 604, 774, 965, 1177, 1410, 1664, 1939, 2235, 2552, 2890, 3249, 3629, 4030, 4452, 4895, 5359, 5844, 6350, 6877, 7425, 7994, 8584, 9195, 9827, 10480, 11154, 11849, 12565, 13302, 14060, 14839, 15639, 16460, 17302, 18165, 19049, 19954
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th dodecagonal number and n-th tridecagonal number.
Sum of reciprocals of a(n), for n > 0: 0.58517199913243139233033474262449...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=21: see list in A226488.

Programs

  • Magma
    [n*(21*n-17)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,25]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (21 n - 17)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 19 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,2,25},50] (* Harvey P. Dale, Feb 01 2023 *)
  • PARI
    a(n)=n*(21*n-17)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: x*(2+19*x)/(1-x)^3.
a(n) + a(-n) = A064762(n).
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(4 + 21*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Previous Showing 11-20 of 31 results. Next