cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A152997 Twice 13-gonal numbers: a(n) = n*(11*n - 9).

Original entry on oeis.org

0, 2, 26, 72, 140, 230, 342, 476, 632, 810, 1010, 1232, 1476, 1742, 2030, 2340, 2672, 3026, 3402, 3800, 4220, 4662, 5126, 5612, 6120, 6650, 7202, 7776, 8372, 8990, 9630, 10292, 10976, 11682, 12410, 13160, 13932, 14726, 15542, 16380, 17240, 18122, 19026, 19952, 20900, 21870, 22862, 23876
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Crossrefs

Cf. A051865 (13-gonal numbers).
Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=22). - Bruno Berselli, Jun 10 2013

Programs

Formula

a(n) = 11*n^2 - 9*n = A051865(n)*2.
a(n) = a(n-1) + 22*n - 20 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 2*x*(1 + 10*x)/(1-x)^3.
E.g.f.: x*(2 + 11*x)*exp(x). (End)

Extensions

Terms a(39) onward added by G. C. Greubel, Sep 01 2019

A227321 a(n) is the least r>=3 such that the difference between the nearest r-gonal number >= n and n is an r-gonal number.

Original entry on oeis.org

3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 3, 8, 3, 3, 4, 5, 3, 11, 3, 3, 3, 5, 4, 3, 10, 3, 3, 11, 3, 17, 4, 3, 5, 3, 3, 7, 14, 3, 4, 15, 3, 23, 3, 3, 5, 11, 4, 3, 5, 5, 3, 19, 3, 3, 3, 8, 5, 21, 3, 32, 14, 3, 4, 3, 3, 15, 3, 5, 5, 25, 3, 38, 7, 3, 6, 3, 3, 13, 4, 3
Offset: 0

Views

Author

Vladimir Shevelev, Jul 30 2013

Keywords

Comments

The n-th r-gonal numbers is n((n-1)r-2(n-2))/2, such that 3-gonal numbers are triangular numbers, 4-gonal numbers are squares, etc.

Crossrefs

Cf. A000217 (r=3), A000290 (r=4), A000326 (r=5), A000384 (r=6), A000566 (r=7), A000567 (r=8), A001106-7 (r=9,10), A051682 (r=11), A051624 (r=12), A051865-A051876 (r=13-24).

Programs

  • Mathematica
    rGonalQ[r_,0]:=True; rGonalQ[r_,n_]:=IntegerQ[(Sqrt[((8r-16)n+(r-4)^2)]+r-4)/(2r-4)]; nthrGonal[r_,n_]:=(n (r-2)(n-1))/2+n; nextrGonal[r_,n_]:=nthrGonal[r,Ceiling[(Sqrt[((8r-16)n+(r-4)^2)]+r-4)/(2r-4)]]; (* next r-gonal number greater than or equal to n *) Table[NestWhile[#+1&,3,!rGonalQ[#,nextrGonal[#,n]-n]&],{n,0,99}] (* Peter J. C. Moses, Aug 03 2013 *)

Formula

If n is prime, then n == 1 or 2 mod (a(n)-2). If n >= 13 is the greater of a pair of twin primes (A006512), then a(n) = (n+3)/2. - Vladimir Shevelev, Aug 07 2013

Extensions

More terms from Peter J. C. Moses, Jul 30 2013

A236257 a(n) = 2*n^2 - 7*n + 9.

Original entry on oeis.org

9, 4, 3, 6, 13, 24, 39, 58, 81, 108, 139, 174, 213, 256, 303, 354, 409, 468, 531, 598, 669, 744, 823, 906, 993, 1084, 1179, 1278, 1381, 1488, 1599, 1714, 1833, 1956, 2083, 2214, 2349, 2488, 2631, 2778, 2929, 3084, 3243, 3406, 3573, 3744, 3919, 4098, 4281, 4468
Offset: 0

Views

Author

Vladimir Shevelev, Jan 21 2014

Keywords

Comments

If zero polygonal numbers are ignored, then for n >= 3, the a(n)-th n-gonal number is a sum of the (a(n)-1)-th n-gonal number and the (2*n-3)-th n-gonal number.

Examples

			a(7)=58. This means that the 58th heptagonal number 8323 (cf. A000566) is a sum of two heptagonal numbers. We have 8323 = 8037 + 286 with indices in A000566 58,57,11.
		

Crossrefs

Programs

  • Mathematica
    Table[2 n^2 - 7 n + 9, {n, 0, 48}] (* Michael De Vlieger, Apr 19 2015 *)
    LinearRecurrence[{3,-3,1},{9,4,3},50] (* Harvey P. Dale, Nov 24 2017 *)
  • PARI
    Vec(-(18*x^2-23*x+9)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014

Formula

From Colin Barker, Jan 21 2014: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(18*x^2 - 23*x + 9)/(x-1)^3. (End)
E.g.f.: exp(x)*(9 - 5*x + 2*x^2). - Elmo R. Oliveira, Nov 13 2024

A256716 a(n) = n*(n+1)*(22*n-19)/6.

Original entry on oeis.org

0, 1, 25, 94, 230, 455, 791, 1260, 1884, 2685, 3685, 4906, 6370, 8099, 10115, 12440, 15096, 18105, 21489, 25270, 29470, 34111, 39215, 44804, 50900, 57525, 64701, 72450, 80794, 89755, 99355, 109616, 120560, 132209, 144585, 157710, 171606, 186295, 201799, 218140
Offset: 0

Views

Author

Bruno Berselli, Apr 09 2015

Keywords

Comments

This sequence is related to the tridecagonal numbers (A051865) by a(n) = n*A051865(n) - Sum_{i=0..n-1} A051865(i).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (22nd row of the table).

Crossrefs

Partial sums of A051876.
Cf. similar sequences listed in A237616.
Cf. A051865.

Programs

  • Magma
    [n*(n+1)*(22*n-19)/6: n in [0..40]];
  • Mathematica
    Table[n (n + 1) (22 n - 19)/6, {n, 0, 40}]
  • PARI
    vector(40, n, n--; n*(n+1)*(22*n-19)/6)
    
  • Sage
    [n*(n+1)*(22*n-19)/6 for n in (0..40)]
    

Formula

G.f.: x*(1 + 21*x)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=25, a(3)=94.
a(n) = Sum_{i=0..n-1} (n-i)*(22*i+1) for n>0.
E.g.f.: exp(x)*x*(6 + 69*x + 22*x^2)/6. - Elmo R. Oliveira, Aug 04 2025

A081928 Sum of the n smallest numbers having the sum of their digits equal to n.

Original entry on oeis.org

1, 13, 36, 70, 115, 171, 238, 316, 405, 604, 868, 1197, 1591, 2158, 2844, 3829, 5140, 6939, 9415, 12100, 14994, 18493, 26062, 34650, 49414, 69535, 96534, 129412, 164299, 201195, 240154, 281122, 414036, 584635, 852634, 1212633, 1629532
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Comments

Sum of n-th row of A081926.

Examples

			The two smallest numbers with digit sum 2 are 2 and 11, whose sum is 13.
For seven, 7+16+25+34+43+52+61=238.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{}, co = 0; in = 1; su = 0; While[co < n, If[Plus @@ IntegerDigits[in] == n, co++; su = su + in]; in++ ]; su]; Table[a[n], {n, 1, 30}] (Steinerberger)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A236333 The (n-2)-th (n>=3) triple of terms gives coefficients of double trinomial P_n(x) = ((n-2)^2*x^2 + n*x + 2)/2 (see comment).

Original entry on oeis.org

1, 3, 2, 4, 4, 2, 9, 5, 2, 16, 6, 2, 25, 7, 2, 36, 8, 2, 49, 9, 2, 64, 10, 2, 81, 11, 2, 100, 12, 2, 121, 13, 2, 144, 14, 2, 169, 15, 2, 196, 16, 2, 225, 17, 2, 256, 18, 2, 289, 19, 2, 324, 20, 2, 361, 21, 2, 400, 22, 2, 441, 23, 2, 484, 24, 2, 529, 25, 2, 576, 26, 2, 625, 27, 2, 676, 28, 2, 729, 29, 2
Offset: 3

Views

Author

Vladimir Shevelev, Jan 22 2014

Keywords

Comments

Let {G_n(k)}_(k>=0) be sequence of n-gonal numbers. Then G_n(P_n(k)) = G_n(P_n(k)-1) + G_n((n-2)*k+1).

Examples

			Let n=5, k=4. Then G_5(k)=k*(3*k-1)/2 (Cf. A000326) and the double trinomial 2*P_5(x)= 9*x^2+5*x+2, P_5(4)=(9*4^2+5*4+2)/2=83,
Thus, we have G_5(83)=G_5(82)+G_5(13), or 83*124 = 41*245 + 13*19 = 10292.
		

Crossrefs

Programs

  • Magma
    I:=[1,3,2,4,4,2,9,5,2]; [n le 9 select I[n] else 3*Self(n-3)-3*Self(n-6)+Self(n-9): n in [1..90]]; // Vincenzo Librandi, Feb 02 2014
  • Mathematica
    a[n_]:=Which[Mod[n,3]==0,n^2/9,Mod[n,3]==1,(n+5)/3,True,2]; Map[a,Range[3,103]]
    CoefficientList[Series[(-1-3 x-2 x^2-x^3+5 x^4+4 x^5-2 x^7-2 x^8)/((-1+x)^3 (1+x+x^2)^3),{x,0,100}],x]
  • PARI
    Vec(-x^3*(2*x^8+2*x^7-4*x^5-5*x^4+x^3+2*x^2+3*x+1)/((x-1)^3*(x^2+x+1)^3) + O(x^100)) \\ Colin Barker, Jan 23 2014
    

Formula

If n==0 (mod 3), then a(n) = n^2/9;
if n==1 (mod 3), then a(n) = (n+5)/3;
if n==2 (mod 3), then a(n) = 2.
G.f.: -x^3*(2*x^8+2*x^7-4*x^5-5*x^4+x^3+2*x^2+3*x+1) / ((x-1)^3*(x^2+x+1)^3). - Colin Barker, Jan 23 2014

A287325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2 + j^2).

Original entry on oeis.org

1, 1, -2, 1, -1, 0, 1, -1, -1, 0, 1, -1, 0, 0, 2, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 1, -1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -2, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2017

Keywords

Examples

			Square array begins:
   1,   1,   1,   1,   1,   1, ...
  -2,  -1,  -1,  -1,  -1,  -1, ...
   0,  -1,   0,   0,   0,   0, ...
   0,   0,  -1,   0,   0,   0, ...
   2,   0,   0,  -1,   0,   0, ...
   0,   1,   0,   0,  -1,   0, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i x^(k i (i - 1)/2 + i^2), {i, -n, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[(1 - x^((k + 2) i)) (1 - x^((k + 2) i - 1)) (1 - x^((k + 2) i - k - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(2 + k) QPochhammer[1/x, x^(2 + k)] QPochhammer[x^(-1 - k), x^(2 + k)] QPochhammer[x^(2 + k), x^(2 + k)])/((-1 + x) (-1 + x^(1 + k))), {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column 0: Sum_{j=-inf..inf} (-1)^j*x^A000290(j) = Product_{i>=1} (1 + x^i)/(1 - x^i) (convolution inverse of A015128).
G.f. of column 1: Sum_{j=-inf..inf} (-1)^j*x^A000326(j) = Product_{i>=1} (1 - x^i) (convolution inverse of A000041).
G.f. of column 2: Sum_{j=-inf..inf} (-1)^j*x^A000384(j) = Product_{i>=1} (1 - x^(2*i))/(1 + x^(2*i-1)) (convolution inverse of A006950).
G.f. of column 3: Sum_{j=-inf..inf} (-1)^j*x^A000566(j) = Product_{i>=1} (1 - x^(5*i))*(1 - x^(5*i-1))*(1 - x^(5*i-4)) (convolution inverse of A036820).
G.f. of column 4: Sum_{j=-inf..inf} (-1)^j*x^A000567(j) = Product_{i>=1} (1 - x^(6*i))*(1 - x^(6*i-1))*(1 - x^(6*i-5)) (convolution inverse of A195848).
G.f. of column 5: Sum_{j=-inf..inf} (-1)^j*x^A001106(j) = Product_{i>=1} (1 - x^(7*i))*(1 - x^(7*i-1))*(1 - x^(7*i-6)) (convolution inverse of A195849).
G.f. of column 6: Sum_{j=-inf..inf} (-1)^j*x^A001107(j) = Product_{i>=1} (1 - x^(8*i))*(1 - x^(8*i-1))*(1 - x^(8*i-7)) (convolution inverse of A195850).
G.f. of column 7: Sum_{j=-inf..inf} (-1)^j*x^A051682(j) = Product_{i>=1} (1 - x^(9*i))*(1 - x^(9*i-1))*(1 - x^(9*i-8)) (convolution inverse of A195851).
G.f. of column 8: Sum_{j=-inf..inf} (-1)^j*x^A051624(j) = Product_{i>=1} (1 - x^(10*i))*(1 - x^(10*i-1))*(1 - x^(10*i-9)) (convolution inverse of A195852).
G.f. of column 9: Sum_{j=-inf..inf} (-1)^j*x^A051865(j) = Product_{i>=1} (1 - x^(11*i))*(1 - x^(11*i-1))*(1 - x^(11*i-10)) (convolution inverse of A196933).
G.f. of column k: Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2+j^2) = Product_{i>=1} (1 - x^((k+2)*i))*(1 - x^((k+2)*i-1))*(1 - x^((k+2)*i-k-1)).

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.

A365522 Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.

Original entry on oeis.org

6, 3, 8, 7, 0, 4, 5, 2, 8, 7, 7, 9, 8, 1, 8, 3, 6, 5, 5, 9, 7, 4, 7, 6, 7, 4, 6, 0, 5, 1, 2, 1, 6, 6, 0, 5, 7, 7, 8, 3, 1, 7, 2, 4, 0, 1, 9, 5, 1, 2, 3, 6, 1, 6, 3, 4, 6, 7, 4, 5, 9, 9, 2, 0, 3, 7, 5, 7, 5, 7, 5, 7, 5, 9, 7, 7, 7, 2, 5, 9, 8, 0, 3, 8, 1, 2, 1, 5, 3, 1, 5, 8, 1, 6, 5, 7, 0, 5, 4, 4, 0, 2, 5, 1, 6, 5, 6, 2, 7, 0, 9, 8, 6, 7, 5
Offset: 0

Views

Author

Claude H. R. Dequatre, Sep 08 2023

Keywords

Comments

This sequence is also the decimal expansion of Sum_{k>=1} 1/(f(k) +g(k)), where f(k) and g(k) are respectively the k-th triangular and the 13-gonal numbers (A000217 and A051865).

Examples

			0.63870452877981836559747674605121660577831724019512...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); (Pi(R)*Sqrt(3)+9*Log(3))/24; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[(Pi*Sqrt[3] + 9*Log[3])/24, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
  • PARI
    (Pi*sqrt(3)+9*log(3))/24
    
  • SageMath
    numerical_approx((pi*sqrt(3)+9*log(3))/24, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Equals Sum_{k>=1} 1/(6*k^2 - 4*k) = A244645/2 [Shamos].
Equals - Integral_{x=0..1} log(1-x^6)/x^5 dx [Shamos].

A373616 Positive integers that cannot be written as a sum of a practical number and a 13-gonal number.

Original entry on oeis.org

10, 11, 22, 23, 26, 27, 34, 35, 39, 46, 47, 50, 51, 58, 59, 62, 63, 70, 75, 83, 87, 95, 99, 107, 111, 115, 122, 137, 138, 146, 149, 152, 159, 165, 167, 184, 185, 188, 194, 206, 218, 222, 245, 248, 263, 282, 284, 287, 314, 329, 345, 354, 357, 359, 362, 383, 386
Offset: 1

Views

Author

Duc Van Khanh Tran, Jun 11 2024

Keywords

Comments

Somu and Tran (2024) conjectured that there are finitely many such integers. It was also conjectured that 1612172 is the largest such integer. This conjecture was checked up to 10^8.

Examples

			11 is in the sequence as 13-gonal numbers below 11 are 0, 1 and both 11-0 and 11-1 are not practical. - _David A. Corneth_, Jun 11 2024
		

Crossrefs

Previous Showing 21-30 of 31 results. Next