A030450
Related to number of elements in the free band (idempotent semigroup) on n generators.
Original entry on oeis.org
1, 1, 4, 144, 331776, 2751882854400, 272622932796264897576960000, 3641839910835401567626683591527643364677019238400000000
Offset: 0
Marcel Jackson (marcel_j(AT)hilbert.maths.utas.edu.au)
- John M. Howie, Fundamentals of Semigroup Theory, Oxford University Press 1995, p. 123.
-
s=1;lst={};Do[AppendTo[lst,s*=s*=n],{n,9}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 20 2009 *)
Fold[Append[#1, (#2 Last[#1])^2] &, {1}, Range@ 7] (* Michael De Vlieger, Dec 03 2017 *)
-
{a(n) = if(n<0, 0, prod(i=1, n, (n-i+1)^2^i))}; /* Michael Somos, Oct 22 2006 */
-
def A030450(n) :
return prod((n-i+1)^(2^i) for i in (1..n))
[A030450(n) for n in (0..9)] # Jani Melik, Jun 06 2015
A123853
Numerators in an asymptotic expansion for the cubic recurrence sequence A123851.
Original entry on oeis.org
1, 3, -15, 113, -5397, 84813, -3267755, 74391561, -15633072909, 465681118929, -31041303829713, 1145088996404679, -185348722911971841, 8165727090278785521, -778296382754673737187, 39898888480559205453945, -35033447016186321707305533
Offset: 0
A123851(n) ~ c^(3^n)*n^(-1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
- Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
- T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - _Petros Hadjicostas_, Aug 09 2019]
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
- Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
- Aimin Xu, Asymptotic expansion related to the Generalized Somos Recurrence constant, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - _Petros Hadjicostas_, Aug 09 2019]
-
f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do numer(coeff(series(f(3,x),x=0,30),x,j)); od;
-
{a(n) = local(A); if(n < 0, 0, A = 1 + O(x) ; for( k = 1, n, A = truncate(A) + x * O(x^k); A += x^k * polcoeff( 3/4 * (subst(1/A, x, x^2/(1-x^2))^2/(1-x^2) - 1/subst(A, x, x^2)^(2/3)), 2*k ) ); numerator( polcoeff( A, n ) ) ) } /* Michael Somos, Aug 23 2007 */
A088679
a(n) = a(n-1)^2 * n / (n-1), n>1, a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 6, 48, 2880, 9953280, 115579079884800, 15266884236590834264309760000, 262212473580148912869121218589990322256745385164800000000
Offset: 0
x + 2*x^2 + 6*x^3 + 48*x^4 + 2880*x^5 + 9953280*x^6 + ...
-
Join[{0},RecurrenceTable[{a[1]==1,a[n]==a[n-1]^2 n/(n-1)},a,{n,10}]] (* Harvey P. Dale, Jan 16 2015 *)
-
{a(n) = if( n<2, n>0, a(n-1)^2 * n / (n-1))}
A164334
Quartic recurrence sequence a(0) = 1, a(n) = n*a(n-1)^4.
Original entry on oeis.org
1, 1, 2, 48, 21233664, 1016411962239204484414785454080
Offset: 0
David Willingham (D.Willingham(AT)wmin.ac.uk), Aug 13 2009
-
nxt[{n_,a_}]:={n+1,(n+1)a^4}; NestList[nxt,{0,1},5][[All,2]] (* Harvey P. Dale, Dec 19 2016 *)
-
a(n) = if (n==0, 1, n*a(n-1)^4); \\ Michel Marcus, Sep 14 2017
A097635
Triangle read by rows: T(n,k) = number of unique-valued sequences of length k, n >= 1, 1 <= k <= 2n-3, in the symmetric group S_n.
Original entry on oeis.org
1, 2, 6, 18, 12, 24, 456, 5664, 20640, 576, 120, 13560, 1395840
Offset: 1
Aleksandar Blazhevski-Cane (CaneB(AT)mt.net.mk), Aug 17 2004
Triangle begins:
1
2
6 18 12
24 456 5664 20640 576
120 13560 1395840 ?
Entry revised Dec 31 2005
A164335
Quintic recurrence sequence a(0) = 1, a(n) = n*a(n-1)^5.
Original entry on oeis.org
1, 1, 2, 96, 32614907904, 184523119031305377426211669050277696887837070322565120
Offset: 0
David Willingham (D.Willingham(AT)wmin.ac.uk), Aug 13 2009
-
nxt[{n_, a_}] := {n + 1, (n + 1) a^5}; NestList[nxt, {0, 1}, 5][[All, 2]] (* G. C. Greubel, Sep 14 2017 *)
-
a(n) = if (n==0, 1, n*a(n-1)^5); \\ Michel Marcus, Sep 14 2017
A275611
a(0) = 1, a(n) = n * a(n-1)^2 + a(n-1).
Original entry on oeis.org
1, 2, 10, 310, 384710, 740009305210, 3285682630785061608169810, 75569972451698504356522006689642008796426176222510, 45686565890803766858880247710072390769807010129716258796255559717444312778982342222557219570421823310
Offset: 0
-
a[n_] := a[n - 1] (n*a[n - 1] + 1); a[0] = 1; Array[a, 9, 0] (* Robert G. Wilson v, Dec 24 2016 *)
-
a(n) = if(n==0, 1, n * a(n-1)^2 + a(n-1));
A347289
Number of independent sets in the binomial tree of order n.
Original entry on oeis.org
2, 3, 8, 60, 3456, 11612160, 132090377011200, 17175244766164688547348480000, 291347192866832125410134687322211469174161539072000000000, 84034354923469245337680441503007090893711465882978424632224243601869256327175152475648504794972160000000000000000
Offset: 0
For n=5, the product formula is a(5) = 7 * 5 * 4^2 * 3^4 * 2^8 = 11612160.
Comments