A223592
T(n,k) = Number of n X k 0..1 arrays with every row having the same least squares slope fit to a straight line, and every column the same least squares slope fit to a straight line, with a single point array taken as having zero slope.
Original entry on oeis.org
2, 4, 4, 8, 6, 8, 16, 10, 10, 16, 32, 18, 32, 18, 32, 64, 34, 44, 44, 34, 64, 128, 66, 192, 56, 192, 66, 128, 256, 130, 296, 212, 212, 296, 130, 256, 512, 258, 1744, 316, 1664, 316, 1744, 258, 512, 1024, 514, 2838, 1788, 2008, 2008, 1788, 2838, 514, 1024, 2048, 1026
Offset: 1
Some solutions for n=3, k=4
..1..0..1..1....0..0..0..0....0..0..0..0....1..0..0..1....1..1..0..1
..0..0..1..0....1..1..1..1....0..1..1..0....0..0..0..0....1..1..0..1
..1..0..1..1....1..1..1..1....0..0..0..0....1..0..0..1....1..1..0..1
A254030
a(n) = 1*4^n + 2*3^n + 3*2^n + 4*1^n.
Original entry on oeis.org
10, 20, 50, 146, 470, 1610, 5750, 21146, 79430, 303050, 1169750, 4554746, 17852390, 70322090, 278050550, 1102537946, 4381257350, 17438542730, 69495104150, 277204002746, 1106488342310, 4418973508970, 17654960746550
Offset: 0
-
seq(add(i*(5 - i)^n, i = 1..4), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[3 2^n + 2^(2 n) + 2 3^n + 4, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
LinearRecurrence[{10,-35,50,-24},{10,20,50,146},30] (* Harvey P. Dale, Jun 06 2020 *)
-
Vec(-2*(77*x^3-100*x^2+40*x-5)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254031
a(n) = 1*5^n + 2*4^n + 3*3^n + 4*2^n + 5*1^n.
Original entry on oeis.org
15, 35, 105, 371, 1449, 6035, 26265, 117971, 542409, 2538515, 12044025, 57756371, 279305769, 1359736595, 6654800985, 32708239571, 161307227529, 797687136275, 3953299529145, 19626731023571, 97576919443689, 485664640673555
Offset: 0
-
seq(add(i*(6 - i)^n, i = 1..5), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[2^(n + 2) + 2^(2 n + 1) + 3^(n + 1) + 5^n + 5, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
LinearRecurrence[{15,-85,225,-274,120},{15,35,105,371,1449},30] (* Harvey P. Dale, Jan 24 2022 *)
-
Vec(-(1044*x^4-1604*x^3+855*x^2-190*x+15)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254144
a(n) = 1*6^n + 2*5^n + 3*4^n + 4*3^n + 5*2^n + 6*1^n.
Original entry on oeis.org
21, 56, 196, 812, 3724, 18236, 93436, 494732, 2685004, 14851676, 83384476, 473755052, 2717541484, 15709845116, 91395715516, 534498925772, 3139343105164, 18504595174556, 109397060622556, 648335998054892, 3850205790608044
Offset: 0
-
seq(add(i*(7 - i)^n, i = 1..6), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[5 2^n + 3 4^n + 4 3^n + 2 5^n + 6^n + 6, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
-
Vec(-(8028*x^5-13916*x^4+8939*x^3-2695*x^2+385*x-21)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254145
a(n) = 1*7^n + 2*6^n + 3*5^n + 4*4^n + 5*3^n + 6*2^n + 7*1^n.
Original entry on oeis.org
28, 84, 336, 1596, 8400, 47244, 278256, 1695036, 10592400, 67518444, 437200176, 2867080476, 18997064400, 126948964044, 854359702896, 5783851121916, 39350309552400, 268842017200044, 1843254419626416, 12675940450459356
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formula
- Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
-
seq(add(i*(8 - i)^n, i = 1..7), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[6 2^n + 4 4^n + 5 3^n + 2 6^n + 3 5^n + 7^n + 7, {n, 0, 25}] (* *)
LinearRecurrence[{28,-322,1960,-6769,13132,-13068,5040},{28,84,336,1596,8400,47244,278256},30] (* or *) Table[Total[ Range[ 7]Range[ 7,1,-1]^n],{n,0,20}] (* Harvey P. Dale, Jun 21 2016 *)
-
Vec(-4*(17316*x^6 -32926*x^5 +24199*x^4 -8911*x^3 +1750*x^2 -175*x +7) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
A254146
a(n) = 1*8^n + 2*7^n + 3*6^n + 4*5^n + 5*4^n + 6*3^n + 7*2^n + 8*1^n.
Original entry on oeis.org
36, 120, 540, 2892, 17172, 109020, 725220, 4992492, 35277012, 254402940, 1864757700, 13850340492, 103996064052, 787943896860, 6015370201380, 46217575406892, 357036252710292, 2770979252910780, 21591510288112260, 168818732978719692, 1323861500735007732
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas
- Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
-
[7*2^n+5*4^n+8^n+6*3^n+3*6^n+4*5^n+2*7^n+8: n in [0..30]]; // Vincenzo Librandi, Jan 28 2015
-
seq(add(i*(9 - i)^n, i = 1..8), n = 0..20); # Peter Bala, Jan 31 2017
-
Table[7 2^n + 5 4^n + 8^n + 6 3^n + 3 6^n + 4 5^n + 2 7^n + 8, {n, 0, 30}] (* Vincenzo Librandi, Jan 28 2015 *)
LinearRecurrence[{36,-546,4536,-22449,67284,-118124,109584,-40320},{36,120,540,2892,17172,109020,725220,4992492},30] (* Harvey P. Dale, Mar 02 2022 *)
-
vector(30, n, n--; 7*2^n + 5*4^n + 8^n + 6*3^n + 3*6^n + 4*5^n + 2*7^n + 8) \\ Colin Barker, Jan 28 2015
A334622
A(n,k) is the sum of the k-th powers of the descent set statistics for permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 8, 1, 1, 2, 10, 24, 16, 1, 1, 2, 18, 88, 120, 32, 1, 1, 2, 34, 360, 1216, 720, 64, 1, 1, 2, 66, 1576, 14460, 24176, 5040, 128, 1, 1, 2, 130, 7224, 190216, 994680, 654424, 40320, 256, 1, 1, 2, 258, 34168, 2675100, 46479536, 109021500, 23136128, 362880, 512
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
4, 6, 10, 18, 34, 66, 130, ...
8, 24, 88, 360, 1576, 7224, 34168, ...
16, 120, 1216, 14460, 190216, 2675100, 39333016, ...
32, 720, 24176, 994680, 46479536, 2368873800, 128235838496, ...
...
-
b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1, t+1)*x^floor(2^(t-1)), j=1..u)+
add(b(u+j-1, o-j, t+1), j=1..o)))
end:
A:= (n, k)-> (p-> add(coeff(p, x, i)^k, i=0..degree(p)))(b(n, 0$2)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, t + 1] x^Floor[2^(t - 1)], {j, 1, u}] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]];
A[n_, k_] := Function[p, Sum[Coefficient[p, x, i]^k, {i, 0, Exponent[p, x]}]][b[n, 0, 0]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
A250742
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nonincreasing x(i,j)-x(i-1,j) in the j direction.
Original entry on oeis.org
6, 10, 10, 18, 14, 18, 34, 22, 22, 34, 66, 38, 30, 38, 66, 130, 70, 46, 46, 70, 130, 258, 134, 78, 62, 78, 134, 258, 514, 262, 142, 94, 94, 142, 262, 514, 1026, 518, 270, 158, 126, 158, 270, 518, 1026, 2050, 1030, 526, 286, 190, 190, 286, 526, 1030, 2050, 4098, 2054, 1038
Offset: 1
Some solutions for n=4 k=4
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
A003311
Write down the numbers from 3 to infinity. Take next number, M say, that has not been crossed off. Counting through the numbers that have not yet been crossed off after that M, cross off the first, (M+1)st, (2M+1)st, (3M+1)st, etc. Repeat. The numbers that are left form the sequence.
Original entry on oeis.org
3, 5, 8, 11, 15, 18, 23, 27, 32, 38, 42, 47, 53, 57, 63, 71, 75, 78, 90, 93, 98, 105, 113, 117, 123, 132, 137, 140, 147, 161, 165, 168, 176, 183, 188, 197, 206, 212, 215, 227, 233, 237, 243, 252, 258, 267, 278, 282, 287, 293, 303, 312, 317, 323
Offset: 1
The first few sieving stages are as follows:
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
3 X 5 6 X 8 9 XX 11 12 XX 14 15 XX 17 18 XX 20 ...
3 X 5 X X 8 9 XX 11 12 XX XX 15 XX 17 18 XX 20 ...
3 X 5 X X 8 X XX 11 12 XX XX 15 XX 17 18 XX 20 ...
3 X 5 X X 8 X XX 11 XX XX XX 15 XX 17 18 XX 20 ...
3 X 5 X X 8 X XX 11 XX XX XX 15 XX XX 18 XX 20 ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Entry revised Nov 29 2004
A056469
Number of elements in the continued fraction for Sum_{k=0..n} 1/2^2^k.
Original entry on oeis.org
2, 3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0
G.f. = 2 + 3*x + 4*x^2 + 6*x^3 + 10*x^4 + 18*x^5 + 34*x^6 + ... - _Michael Somos_, Jun 29 2023
-
[Floor(2^(n-1)+2): n in [0..60]]; // Vincenzo Librandi, Sep 21 2011
-
LinearRecurrence[{3,-2},{2,3,4},40] (* Harvey P. Dale, Apr 23 2015 *)
a[ n_] := If[n < 0, 0, Floor[2^n/2] + 2]; (* Michael Somos, Jun 29 2023 *)
-
{a(n) = if(n<0, 0, 2^n\2 + 2)}; /* Michael Somos, Jun 29 2023 */
-
[floor(gaussian_binomial(n,1,2)+3) for n in range(-1,32)] # Zerinvary Lajos, May 31 2009
Comments