A126776
Basis orbits of n-dimensional cubes.
Original entry on oeis.org
1, 1, 4, 17, 237, 9892
Offset: 1
A137320
Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 2, 4, 0, 4, 12, 8, 0, 12, 44, 48, 16, 0, 48, 200, 280, 160, 32, 0, 240, 1096, 1800, 1360, 480, 64, 0, 1440, 7056, 12992, 11760, 5600, 1344, 128, 0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512
Offset: 0
[0] {1},
[1] {0, 2},
[2] {0, 2, 4},
[3] {0, 4, 12, 8},
[4] {0, 12, 44, 48, 16},
[5] {0, 48, 200, 280, 160, 32},
[6] {0, 240, 1096, 1800, 1360, 480, 64},
[7] {0, 1440, 7056, 12992, 11760, 5600, 1344, 128},
[8] {0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256},
[9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}.
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n<2,2,2*n!), 8); # Peter Luschny, Jan 27 2016
p := (n,x) -> (n + 2*x - 1)!/(2*x - 1)!:
seq(seq(coeff(expand(p(n,x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019
-
m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x;
p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1];
Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A281291
Numbers n such that 2*n! is not a refactorable number.
Original entry on oeis.org
2, 4, 8, 16, 256, 65536
Offset: 1
8 is a term since d(2*8!) = 2^2 * 3^3 does not divide 2 * 8! = 2^8 * 3^2 * 5 * 7.
A367962
Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!).
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 6, 12, 15, 16, 24, 48, 60, 64, 65, 120, 240, 300, 320, 325, 326, 720, 1440, 1800, 1920, 1950, 1956, 1957, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 13700, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 109601
Offset: 0
[0] 1;
[1] 1, 2;
[2] 2, 4, 5;
[3] 6, 12, 15, 16;
[4] 24, 48, 60, 64, 65;
[5] 120, 240, 300, 320, 325, 326;
[6] 720, 1440, 1800, 1920, 1950, 1956, 1957;
Cf.
A094587,
A000142 (T(n, 0)),
A052849 (T(n, 1)),
A000522 (T(n, n)),
A007526 (T(n,n-1)),
A038154 (T(n, n-2)),
A355268 (T(n, n/2)),
A367963(n) (T(2*n, n)/n!).
-
T := (n, k) -> add(n!/j!, j = 0..k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *)
Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 07 2023 *)
-
from functools import cache
@cache
def a_row(n: int) -> list[int]:
if n == 0: return [1]
row = a_row(n - 1) + [0]
for k in range(n): row[k] *= n
row[n] = row[n - 1] + 1
return row
-
def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1))
for n in range(9): print([T(n, k) for k in range(n + 1)])
A371740
Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(2-x).
Original entry on oeis.org
1, 2, 1, 1, 0, 4, 0, 3, 1, 0, 6, 6, 0, 5, 6, 1, 0, 16, 24, 8, 0, 14, 23, 10, 1, 0, 60, 110, 60, 10, 0, 54, 105, 65, 15, 1, 0, 288, 600, 420, 120, 12, 0, 264, 574, 435, 145, 21, 1, 0, 1680, 3836, 3150, 1190, 210, 14, 0, 1560, 3682, 3199, 1330, 280, 28, 1, 0, 11520, 28224, 25984, 11760, 2800, 336, 16
Offset: 0
Triangle begins
n\k | 0 1 2 3 4 5
- - - - - - - - - - - - - - - - -
0 | 1
1 | 2
2 | 1 1
3 | 0 4
4 | 0 3 1
5 | 0 6 6
6 | 0 5 6 1
7 | 0 16 24 8
8 | 0 14 23 10 1
9 | 0 60 110 60 10
10 | 0 54 105 65 15 1
...
-
with(combinat):
T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (n/2)*abs(Stirling1((n-2)/2, k)) else (n+1)*abs(Stirling1((n-1)/2, k)) end if; end proc:
seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);
A384494
Triangle read by rows: T(n, k) = (-1)^k*(k+1)*(n+1-k)!, n >= 0, k = 0..n.
Original entry on oeis.org
1, 2, -2, 6, -4, 3, 24, -12, 6, -4, 120, -48, 18, -8, 5, 720, -240, 72, -24, 10, -6, 5040, -1440, 360, -96, 30, -12, 7, 40320, -10080, 2160, -480, 120, -36, 14, -8, 362880, -80640, 15120, -2880, 600, -144, 42, -16, 9, 3628800, -725760, 120960, -20160, 3600, -720, 168, -48, 18, -10
Offset: 0
The triangle T begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
---------------------------------------------------------------------
0: 1
1: 2 -2
2: 6 -4 3
3: 24 -12 6 -4
4: 120 -48 18 -8 5
5: 720 -240 72 -24 10 -6
6: 5040 -1440 360 -96 30 -12 7
7: 40320 -10080 2160 -480 12 -36 14 -8
8: 362880 -80640 15120 -2880 600 -144 42 -16 9
9: 3628800 -725760 120960 -20160 3600 -720 168 -48 18 -10
...
-
Table[(-1)^k * (k+1) * (n+1-k)!, {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 31 2025 *)
A117826
First four terms of the sequence are doubled, then those numbers are tripled and then those numbers are quadrupled, etc.
Original entry on oeis.org
1, 2, 3, 4, 2, 4, 6, 8, 6, 12, 18, 24, 24, 48, 72, 96, 120, 240, 360, 480, 720, 1440, 2160, 2880, 5040, 10080, 15120, 20160, 40320, 80640, 120960, 161280, 362880, 725760, 1088640, 1451520, 3628800, 7257600, 10886400, 14515200, 39916800, 79833600
Offset: 1
-
Table[n!{1, 2, 3, 4}, {n, 11}] // Flatten
A260229
a(n) = floor(e^(n!)).
Original entry on oeis.org
2, 7, 403, 26489122129, 13041808783936322797338790280986488113446079415755132
Offset: 1
a(1) = floor(e^(1!)) = floor(e) = 2.
-
Table[Floor[E^n!], {n, 1, 7}]
-
default(realprecision, 100); vector(5, n, floor(exp(n!))) \\ Michel Marcus, Aug 06 2015
Comments