cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 118 results. Next

A080541 In binary representation: keep the first digit and left-rotate the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers: let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080542(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20)=a('10100')='11000'=24; a(24)=a('11000')='10001'=17.
		

Crossrefs

Inverse: A080542.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Maple
    f:= proc(n) local d;
       d:= ilog2(n);
       if n >= 3/2*2^d then 2*n+1-2^(d+1) else 2*n - 2^d fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2015
  • Mathematica
    A080541[n_] := FromDigits[Join[{First[#]}, RotateLeft[Rest[#]]], 2] & [IntegerDigits[n, 2]];
    Array[A080541, 100] (* Paolo Xausa, May 13 2025 *)
  • Python
    def A080541(n): return ((n&(m:=1< 1 else n  # Chai Wah Wu, Jan 22 2023
  • R
    maxlevel <- 6 # by choice
    a <- 1:3
    for(m in 1:maxlevel) for(k in 0:(2^(m-1)-1)){
    a[2^(m+1)       + 2*k    ] = 2*a[2^m           + k]
    a[2^(m+1)       + 2*k + 1] = 2*a[2^m + 2^(m-1) + k]
    a[2^(m+1) + 2^m + 2*k    ] = 2*a[2^m           + k] + 1
    a[2^(m+1) + 2^m + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] + 1
    }
    a
    # Yosu Yurramendi, Oct 12 2020
    
  • Scheme
    (define (A080541 n) (if (< n 2) n (A003986bi (A053644 n) (+ (* 2 (A053645 n)) (A079944off2 n))))) ;; A003986bi gives the bitwise OR of its two arguments. See A003986.
    ;; Where A079944off2 gives the second most significant bit of n. (Cf. A079944):
    (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n)))))
    ;; Antti Karttunen, May 16 2015
    

Formula

From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) bitwise_OR (2*A053645(n) + second_most_significant_bit_of(n)). [Here bitwise_OR is a 2-argument function given by array A003986 and second_most_significant_bit_of gives the second most significant bit (0 or 1) of n larger than 1. See A079944.]
Other identities. For all n >= 1:
a(n) = A059893(A080542(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)
A080542(a(n)) = a(A080542(n)) = n. [A080542 is the inverse permutation.]
From Robert Israel, May 19 2015: (Start)
Let d = floor(log[2](n)). If n >= 3*2^(d-1) then a(n) = 2*n + 1 - 2^(d+1), otherwise a(n) = 2*n - 2^d.
G.f.: 2*x/(x-1)^2 + Sum_{n>=1} x^(2^n)+(2^n-1)*x^(3*2^(n-1)))/(x-1). (End)

A080542 In binary representation: keep the first digit and rotate right the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 12, 9, 13, 10, 14, 11, 15, 16, 24, 17, 25, 18, 26, 19, 27, 20, 28, 21, 29, 22, 30, 23, 31, 32, 48, 33, 49, 34, 50, 35, 51, 36, 52, 37, 53, 38, 54, 39, 55, 40, 56, 41, 57, 42, 58, 43, 59, 44, 60, 45, 61, 46, 62, 47, 63, 64, 96, 65, 97, 66, 98, 67, 99, 68
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers with inverse = A080541: A080541(a(n)) = a(A080541(n)) = n;
let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080541(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20) = a('10100') = '10010' = 18.
a(25) = a('11001') = '11100' = 28.
		

Crossrefs

Inverse: A080541.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Mathematica
    kfd[n_]:=Module[{a,b},{a,b}=TakeDrop[IntegerDigits[n,2],1];FromDigits[ Join[a,RotateRight[b]],2]]; Array[kfd,80] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Feb 12 2016 *)
  • Python
    def A080542(n): return (1+(n&1))*(1<>1) if n > 1 else n # Chai Wah Wu, Jan 22 2023
  • R
    nmax <- 31 # by choice
    a <- 1:3
    for(n in 1:nmax) for(k in 0:3)
    a[4*n + k] = 2*a[2*n + (k == 1 | k == 3)] + (k == 2 | k == 3)
    a
    # Yosu Yurramendi, Sep 05 2020
    
  • Scheme
    (define (A080542 n) (if (< n 2) n (+ (A053644 n) (+ (* (A000035 n) (A072376 n)) (A004526 (A053645 n))))))  ;; Antti Karttunen, May 16 2015
    

Formula

a(n) = 2^log2(n) + floor((n-2^log2(n))/2) + (n mod 2)*2^(log2(n)-1), where log2(n) is the integer part of base-2 logarithm.
From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) + (A000035(n)*A072376(n)) + A004526(A053645(n)). [Essentially the same formula but represented with A-numbers.]
Other identities. For all n >= 1:
a(n) = A059893(A080541(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)

A126441 Tabular arrangement of the natural numbers: the row on which any nonzero term a(n) appears in is A053645(a(n))=A053645(n+1), and the column is A161511(a(n)). Table is presented by columns with 2^{k-1} items in column k, unused positions are filled with 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 7, 8, 9, 6, 11, 0, 0, 0, 15, 16, 17, 10, 19, 0, 13, 0, 23, 0, 0, 0, 0, 0, 0, 0, 31, 32, 33, 18, 35, 12, 21, 14, 39, 0, 0, 0, 27, 0, 0, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 64, 65, 34, 67, 20, 37, 22, 71, 0, 25, 0, 43, 0, 29, 0, 79, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0
Offset: 0

Views

Author

Alford Arnold, Jan 19 2007

Keywords

Comments

Note: 1 might be a more natural starting offset for this sequence, although the identities concerning A053645 and A161511 would have to be changed. - Antti Karttunen, Oct 12 2009.
This can be regarded as an arrangement of the partitions, indexed by position in A125106. The partitions in a given row all have the same remaining partition when the largest part is removed; specifically, the partition indexed by the row number in A125106 (with row 0 having the empty partition remaining).
The first value on row n is A004760(n+1). The second value on each row is A004760(n+1) plus A062383(n); subsequent values increase by ever enlarging powers of two. Or equivalently, each subsequent value on the row after the first nonzero value is given by A004754(previous value on the same row).
A055941(r) tells how many terms the row r (>= 0) has been shifted rightward from its "natural position", i.e. with how many zeros that row has been prepended.
The number of (nonzero) entries in column k is A000041(k).

Examples

			The largest power of 2 <= 6 is 4, 6 - 4 = 2, so 6 is in row 2. By A125106, 6 corresponds to the partition [2^2], total 4, so 6 goes in column 4. Thus T(2,4) = 6.
The table begins:
1.2.4..8.16.32.64.128.256.512.1024
..3.5..9.17.33.65.129.257.513.1025
.......6.10.18.34..66.130.258..514
....7.11.19.35.67.131.259.515.1027
............12.20..36..68.132..260
.........13.21.37..69.133.261..517
............14.22..38..70.134..262
......15.23.39.71.135.263.519.1031
...................24..40..72..136
...............25..41..73.137..265
...................26..42..74..138
............27.43..75.139.267..523
.......................28..44...76
...............29..45..77.141..269
...................30..46..78..142
.........31.47.79.143.271.527.1039
...........................48...80
.......................49..81..145
...........................50...82
...................51..83.147..275
		

Crossrefs

Cf. A125106, A053645, A000041, A004760, A062383, A000079 (column lengths).
A053645(a(A166274(n))) = A053645(1+A166274(n)) for all n>=1.
Positions of zeros: A166275, this sequence without zeros: A161924. A161920(n) gives the position of the first nonzero term on the row n-1.

Programs

  • Mathematica
    columns = 7; row[n_] := n-2^Floor[Log2[n]]; col[0] = 0; col[n_] := If[EvenQ[n], col[n/2] + DigitCount[n/2, 2, 1], col[(n-1)/2]+1]; Clear[T]; T[, ] = 0; Do[T[row[k], col[k]] = k, {k, 1, 2^columns}]; Table[T[n-1, k], {k, 1, columns}, {n, 1, 2^(k-1)}] // Flatten (* Jean-François Alcover, Sep 09 2017 *)

Extensions

Edited by Franklin T. Adams-Watters, Jan 23 2007
Further edited and Scheme-code added by Antti Karttunen, Oct 12 2009

A004757 Binary expansion starts 101.

Original entry on oeis.org

5, 10, 11, 20, 21, 22, 23, 40, 41, 42, 43, 44, 45, 46, 47, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185
Offset: 1

Views

Author

Keywords

Examples

			22 in binary is 10110, so 22 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004756 (100), A004758 (110), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004757 n = a004757_list !! (n-1)
    a004757_list = 5 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004757_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Mathematica
    Table[n + 4*2^Floor@ Log2@ n, {n, 57}] (* or *)
    w = {1, 0, 1}; Select[Range[5, 185], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *)
    Select[Range[5,200],Take[IntegerDigits[#,2],3]=={1,0,1}&] (* Harvey P. Dale, Aug 26 2016 *)
  • PARI
    a(n)=n+4*2^floor(log(n)/log(2))
    
  • Python
    def A004757(n): return n+(2<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 4*[n==0].
a(n) = n + 4 * 2^floor(log_2(n)) = A004756(n) + A053644(n).
a(2^m+k) = 5*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A004758 Binary expansion starts 110.

Original entry on oeis.org

6, 12, 13, 24, 25, 26, 27, 48, 49, 50, 51, 52, 53, 54, 55, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213
Offset: 1

Views

Author

Keywords

Examples

			26 in binary is 11010, so 26 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004756 (100), A004757 (101), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004758 n = a004758_list !! (n-1)
    a004758_list = 6 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004758_list
    -- Reinhard Zumkeller, Dec 03 2015
    
  • Mathematica
    w = {1, 1, 0}; Select[Range[5, 213], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* or *)
    Table[n + 5*2^Floor@ Log2@ n, {n, 53}] (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    a(n)=n+5*2^floor(log(n)/log(2))
    
  • Python
    def A004758(n): return n+(5<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 5*[n==0].
a(n) = n + 5 * 2^floor(log_2(n)) = A004757(n) + A053644(n).
a(2^m+k) = 6*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A055975 First differences of A003188 (decimal equivalent of the Gray Code).

Original entry on oeis.org

1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 32, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, -16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 64, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, -32, 1, 2, -1, 4
Offset: 1

Views

Author

Alford Arnold, Jul 22 2000

Keywords

Comments

Multiplicative with a(2^e) = 2^e, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris, May 17 2005
a(A091072(n)) > 0; a(A091067(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
In the binary representation of n, clear everything left of the least significant 1 bit, and negate if the bit left of it was set originally. - Ralf Stephan, Aug 23 2013
This sequence is the trace of n in the minimal alternating binary representation of n (defined at A256696). - Clark Kimberling, Apr 07 2015

Examples

			Since A003188 is 0, 1,  3, 2, 6,  7,  5, 4, 12, 13, 15, 14, 10, ...,
sequence begins  1, 2, -1, 4, 1, -2, -1, 8,  1,  2, -1,  4, ... .
		

Crossrefs

Cf. A003188, A006519 (unsigned), A007814.
MASKTRANSi transform of A053644 (conjectural).

Programs

  • Haskell
    a055975 n = a003188 n - a003188 (n-1)
    a055975_list = zipWith (-) (tail a003188_list) a003188_list
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Maple
    nmax:=100: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (-1)^(n+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 27 2013
  • Mathematica
    f[n_]:=BitXor[n,Floor[n/2]];Differences[Array[f,120,0]] (* Harvey P. Dale, Jul 18 2011, applying Robert G. Wilson v's program from A003188 *)
  • PARI
    a(n)=((-1)^((n/2^valuation(n,2)-1)/2)*2^valuation(n,2)) \\ Ralf Stephan
    
  • Python
    def A055975(n): return (n^(n>>1))-((n-1)^(n-1>>1)) # Chai Wah Wu, Jun 29 2022

Formula

a(2n) = 2a(n), a(2n+1) = (-1)^n. G.f. sum(k>=0, 2^k*t/(1+t^2), t=x^2^k). a(n) = 2^A007814(n) * (-1)^((n/2^A007814(n)-1)/2). - Ralf Stephan, Oct 29 2003
a((2*n-1)*2^p) = (-1)^(n+1)*2^p, p >= 0. - Johannes W. Meijer, Jan 27 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 05 2000

A056744 a(n) is the smallest number which when written in binary contains as substrings the binary expansions of 1..n.

Original entry on oeis.org

1, 2, 6, 12, 44, 44, 92, 184, 1208, 1256, 4792, 4792, 9912, 9912, 19832, 39664, 563952, 576464, 4496112, 4499184, 17996528, 17997488, 143972080, 143972080, 145057520, 145070832, 294967024, 294967024, 589944560, 589944560, 1179889136, 2359778272, 71079255008
Offset: 1

Views

Author

Fred J. Schalekamp, Aug 15 2000

Keywords

Comments

From Davis Smith, May 09 2021: (Start)
For n > 2, a(n) cannot be a power of 2.
If A007088(n) (the binary expansion of n) contains a string of k zeros, then it contains A007088(2^m), where 0 <= m <= k, as a substring. Similarly, if A007088(n) contains a string of k ones, then it contains A007088(2^m - 1), where 1 <= m <= k. Strings of zeros and ones are the most compact way to have powers of 2 and powers of 2 minus 1 (respectively) as substrings in a binary expansion. This means that A007088(a(n)) will contain a string of A000523(n) ones and a string of A000523(n) zeros. The binary expansion of a(2^k - 1) will contain a string of k ones and a string of k - 1 zeros.
Conjecture: a(n) == 0 (mod A053644(n)), i.e., A007088(a(n)) ends with the longest string of zeros. It follows from this that a(2^k) = 2*a(2^k - 1). A conjecture related to this is that a(2^k - 1) = 2*a(2^k - 2) + 2^(k - 1), i.e., A007088(a(2^k - 1)) ends with the longest string of ones followed by the longest string of zeros. Ending with the longest string of ones followed by the longest string of zeros is not true for all A007088(a(n)), as some have a hiccup before starting their string of zeros, e.g., a(10), a(18), a(22), and a(34).
Conjecture: a(2^k + 1) = 2^(k + floor(log_2(a(2^k)))) + a(2^k), i.e., concatenate the binary expansion of 2^(k - 1) to the front of the binary expansion of a(2^k) in order to get the binary expansion of a(2^k + 1).
(End)
All terms belong to A261467. - Rémy Sigrist, May 11 2021
From Jon E. Schoenfield, Jun 03 2021: (Start)
Conjecture: the binary expansion of a(n) contains exactly ceiling(n/2) 1's iff 2^m - 7 <= n <= 2^m + 6 for some integer m >= 3. (See Links.)
Conjecture: for n > 1, the binary expansion of a(n) begins with that of 2^floor(log_2(n-1)) + 1.(End)
From Davis Smith, Jun 05 2021: (Start)
For a proof that a(n) == 2^floor(log_2(n)) (mod 2^(floor(log_2(n)) + 1)), see my second link (not the b-file). This also proves the conjecture from May 09 2021 which states that it is congruent to 0 (mod A053644(n)). A proof for the related conjecture would likely rely on an explanation of values of n such that a(n) is not congruent to (2^floor(log_2(n)) - 1)*2^floor(log_2(n)) (mod 2^(2*floor(log_2(n)))), i.e. the values of n such that A007088(a(n)) does not end with a string of floor(log_2(n)) ones followed immediately by a string of floor(log_2(n)) zeros. A proof for Jon E. Schoenfield's second conjecture on Jun 03 2021 would satisfy my more restricted second conjecture and it may follow necessarily from my proof, assuming that A007088(a(n)) must begin with either A007088(2^floor(log_2(n - 1)) + 1) or A007088(2^floor(log_2(n))). (End)

Examples

			a(6)=44 because 101100 (44 in base 2) is the smallest number that contains 1, 10, 11, 100, 101 and 110 (1 through 6 in base 2).
Terms begin as follows (see Links for a longer table):
.
                a(n)
      =========================
   n  decimal      binary
  --  -------  ----------------
   1        1                 1
   2        2                10
   3        6               110
   4       12              1100
   5       44            101100
   6       44            101100
   7       92           1011100
   8      184          10111000
   9     1208       10010111000
  10     1256       10011101000
  11     4792     1001010111000
  12     4792     1001010111000
  13     9912    10011010111000
  14     9912    10011010111000
  15    19832   100110101111000
  16    39664  1001101011110000
		

Crossrefs

Programs

  • PARI
    A056744_vec(n)={
        my(
            L=List([1]),x=L[#L],Z=n+#L,B=binary(x),
            A=setbinop((y,z)->fromdigits(B[y..z],2),[1..#B])
        );
        while(#Lfromdigits(B[y..z],2),[1..#B]));listput(L,x));Vec(L)
    } \\ Davis Smith, May 09 2021

Formula

A144016(a(n)) >= n. - Rémy Sigrist, May 11 2021

Extensions

More terms from Naohiro Nomoto, Jul 20 2001
a(25)-a(31) from Ray Chandler, Nov 06 2008
a(32) from Davis Smith, May 10 2021
a(33) from Jon E. Schoenfield, May 11 2021

A061854 Nondiving binary sequences: numbers which in base 2 have at least the same number of 1's as 0's and reading the binary expansion from left (msb) to right (least significant bit), the number of 0's never exceeds the number of 1's.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116
Offset: 1

Views

Author

Antti Karttunen, May 11 2001

Keywords

Comments

"msb" = "most significant bit", A053644.
These encode lattice walks using steps (+1,+1) (= 1's in binary expansion) and (+1,-1) (= 0's in binary expansion) that start from the origin (0,0) and never "dive" under the "sea-level" y=0.
The number of such walks of length n (here: the terms of binary width n) is given by C(n,floor(n/2)) = A001405, which is based on the fact mentioned in Guy's article that the shallow diagonals of the Catalan triangle A009766 sum to A001405.
From Jason Kimberley, Feb 08 2013: (Start)
This sequence is a subsequence of A072601.
Define a map from this set onto the nonnegative integers as follows: set the output bit string to be empty, representing zero; process the input string from left to right; when 1 occurs, change the rightmost 0 in the output to 1; if there is no 0 in the output, prepend a 1; when 0 occurs in the input, change the rightmost 1 in the output to 1. The definition of this sequence ensures that we always have a 1 in the output when a 0 occurs in the input. We this map is onto by showing the restriction to the subset Asubsequence is onto. (End)
The binary representation of a(n) is the numeric representation of the left half of a symmetric balanced string of parentheses with "(" representing 1 and ")" representing 0 (see comments and examples in A001405). Some of the numbers in this sequence cannot be realized as the 1-0-pattern of the odd/even positions of 1's in any row n of A237048 that determines the parts and their widths in the symmetric representation of sigma(n), see A352696. - Hartmut F. W. Hoft, Mar 29 2022

Examples

			From _Hartmut F. W. Hoft_, Mar 29 2022: (Start)
The columns in the table are the numbers n, the base-2 representation of n, the left half of the symmetric balanced string of parentheses corresponding to n, validity of the nondiving property for n, and associated number a(n):
1   1      (      True    a(1)
2   10     ()     True    a(2)
3   11     ((     True    a(3)
4   100    ())    False    -
5   101    ()(    True    a(4)
6   110    (()    True    a(5)
7   111    (((    True    a(6)
8   1000   ()))   False    -
9   1001   ())(   False    -
10  1010   ()()   True    a(7)
...
20  10100  ()())  False    -
21  10101  ()()(  True    a(13)
...
(End)
		

Crossrefs

Programs

  • Maple
    # We use a simple backtracking algorithm: map(op,[seq(NonDivingLatticeSequences(j),j=1..10)]);
    NDLS_GLOBAL := []; NonDivingLatticeSequences := proc(n) global NDLS_GLOBAL; NDLS_GLOBAL := []; NonDivingLatticeSequencesAux(0,0,n); RETURN(NDLS_GLOBAL); end;
    NonDivingLatticeSequencesAux := proc(x,h,i) global NDLS_GLOBAL; if(0 = i) then NDLS_GLOBAL := [op(NDLS_GLOBAL),x]; else if(h > 0) then NonDivingLatticeSequencesAux((2*x),h-1,i-1); fi; NonDivingLatticeSequencesAux((2*x)+1,h+1,i-1); fi; end;
  • Mathematica
    a061854[n_] := Select[Range[n], !MemberQ[FoldList[#1+If[#2>0, 1, -1]&, 0, IntegerDigits[n, 2]], -1]]
    a061854[116] (* Hartmut F. W. Hoft, Mar 29 2022 *)
    Select[Range[120],Min[Accumulate[IntegerDigits[#,2]/.(0->-1)]]>=0&] (* Harvey P. Dale, Sep 11 2023 *)

A073121 a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)) with a(1)=1 and (r,s)=(2,2).

Original entry on oeis.org

1, 4, 10, 16, 28, 40, 52, 64, 88, 112, 136, 160, 184, 208, 232, 256, 304, 352, 400, 448, 496, 544, 592, 640, 688, 736, 784, 832, 880, 928, 976, 1024, 1120, 1216, 1312, 1408, 1504, 1600, 1696, 1792, 1888, 1984, 2080, 2176, 2272, 2368, 2464, 2560, 2656, 2752
Offset: 1

Views

Author

Jeffrey Shallit, Aug 25 2002

Keywords

Comments

A recurrence occurring in the analysis of a regular expression algorithm.

Examples

			a(1)=1, a(2) = 2*(a(1)+a(1)) = 4, a(3) = 2*(a(2)+a(1)) = 10.
		

References

  • K. Ellul, J. Shallit and M.-w. Wang, Regular expressions: new results and open problems, in Descriptional Complexity of Formal Systems (DCFS), Proceedings of workshop, London, Ontario, Canada, 21-24 August 2002, pp. 17-34.

Crossrefs

Sequences of form a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(1)=1, for (r,s) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1): A000027, A006046, A064194, A130665, A073121, A268524, A116520, A268525, A268526, A268527.

Programs

  • Haskell
    a073121 n = a053644 n * (fromIntegral n + 2 * a053645 n)
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          2*((m-> a(m)+a(n-m))(iquo(n, 2))))
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Feb 01 2015
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, 2*(a[Quotient[n, 2]] + a[n - Quotient[n, 2]])]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
    a[ n_] := If[ n < 1, 0, Module[{m = 1, A = 1}, While[m < n, m *= 2; A = (Normal[A] /. x -> x^2) 2 (1 + x)^2 - 1 + O[x]^m]; Coefficient[A, x, n - 1]]]; (* Michael Somos, Jul 04 2017 *)
  • PARI
    {a(n) = n--; if( n<0, 0, my(m=1, A = 1 + O(x)); while(m<=n, m*=2; A = subst(A, x, x^2) * 2 * (1 + x)^2 - 1); polcoeff(A, n))}; /* Michael Somos, Jul 04 2017 */

Formula

a(n) = 2*(a(floor(n/2)) + a(ceiling(n/2))) for n >= 2; alternatively, a(n) = 2^c(n+2b) where n = 2^c + b, 0 <= b < 2^c.
a(n) == 1 (mod 3), a(n+1)-a(n) = 3*A053644(n). If k >= 1: a(2^k)=4^k, a(3*2^k)=(10/9)*4^k. More generally a(m*2^k) = a(m)*4^k. Hence for any n, n^2 <= a(n) <= C*n^2 where C is a constant 1.125 < C < 1.14 and it seems that C = lim_{k->infinity} a(A001045(k))/A001045(k)^2 where A001045(k) =(2^n - (-1)^n)/3 is the Jacobsthal sequence. In other words, in the range 2^k <= n <= 2^(k+1) the maximum of a(n)/n^2 is reached for the only possible n in the Jacobsthal sequence. - Benoit Cloitre, Aug 26 2002
For any n, n^2 <= a(n) <= 9/8 * n^2. - Arnoud van der Leer, Sep 01 2019
a(n) = 2*(a(floor(n/2)) + a(ceiling(n/2))) for n >= 2; alternatively, a(n) = 2^c(n+2b) where n = 2^c + b, 0 <= b < 2^c
G.f.: 3*x/(1-x)^2 * ((2*x+1)/3 + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
G.f.: A(x) = 2 * (1/x + 2 + x) * A(x^2) - x. - Michael Somos, Jul 04 2017

Extensions

Edited by N. J. A. Sloane, Feb 16 2016

A287729 The c-fusc function c(n) = a(n): a(1)=1, a(2n) = s(n), a(2n+1) = s(n)+s(n+1), where s(n) = A287730(n).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 5, 4, 7, 3
Offset: 1

Views

Author

I. V. Serov, May 30 2017

Keywords

Comments

Define a sequence chf(n) of Christoffel words over an alphabet {-,+}:
chf(1) = '-',
chf(2*n+0) = negate(chf(n)),
chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))).
Then the length of the chf(n) word is fusc(n) = A002487(n), the number of '-'-signs in the chf(n) word is c-fusc(n) = a(n) (the current sequence) and the number of '+'-signs in the chf(n) word is s-fusc(n) = A287730(n). See examples below.

Examples

			A000027(n) chf(n) A070939(n) A002487(n)    a(n)    A287730(n)
                                fusc       c-fusc     s-fusc
01         '-'       1          1          1          0
02         '+'       2          1          0          1
03         '+-'      2          2          1          1
04         '-'       3          1          1          0
05         '--+'     3          3          2          1
06         '-+'      3          2          1          1
07         '-++'     3          3          1          2
08         '+'       4          1          0          1
09         '+++-'    4          4          1          3
10         '++-'     4          3          1          2
11         '++-+-'   4          5          2          3
12         '+-'      4          2          1          1
13         '+-+--'   4          5          3          2
14         '+--'     4          3          2          1
15         '+---'    4          4          3          1
16         '-'       5          1          1          0
17         '----+'   5          5          4          1
		

Crossrefs

Cf. mutual recurrence pair A000360, A284556 and also A213369.

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def c(n): return 1 if n==1 else s(n//2) if n%2==0 else s((n - 1)//2) + s((n + 1)//2)
    @cacheit
    def s(n): return 0 if n==1 else c(n//2) if n%2==0 else c((n - 1)//2) + c((n + 1)//2)
    print([c(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (definec (A287729 n) (cond ((= 1 n) n) ((even? n) (A287730 (/ n 2))) (else (+ (A287730 (/ (- n 1) 2)) (A287730 (/ (+ n 1) 2))))))
    ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization - Antti Karttunen, Jun 01 2017
    

Formula

The mutual diatomic recurrence pair c(n) (this sequence) and s(n) (A287730) are defined by c(1)=1, s(1)=0, c(2n) = s(n), c(2n+1) = s(n)+s(n+1), s(2n) = c(n), s(2n+1) = c(n)+c(n+1).
a(n) + A287730(n) = A002487(n). [c-fusc(n) + s-fusc(n) = fusc(n).]
gcd(a(n), A287730(n)) = gcd(a(n), A002487(n)) = 1.
Let k(n) = A037227(n) = 1 + 2*A007814(n) = 1 + 2*floor(A002487(n-1)/A002487(n)) for n > 1.
Let d(n) = 2*A255738(n)*(-1)^A070939(n) = 2*(n==2^(A070939(n)-1)+1)*(-1)^A070939(n) = 2*(n==A053644(n)+1)*(-1)^A070939(n) = 2*(A002487(n-1)==1)*(-1)^A070939(n) for n > 1;
then a(n) = k(n-1)*a(n-1) - a(n-2) + d(n) for n > 2 with a(1) = 1, a(2) = 0.
From Yosu Yurramendi, Apr 09 2019: (Start)
For m >= 0, m even, 0 <= k < 2^m, a(2^m+k) = A002487(2^m-k).
For m >= 0, m odd, 0 <= k < 2^m, a(2^m+k) = A002487(k).
(End)
Previous Showing 41-50 of 118 results. Next