A163940
Triangle related to the divergent series 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ... for m >= -1.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 9, 17, 4, 0, 1, 14, 52, 49, 5, 0, 1, 20, 121, 246, 129, 6, 0, 1, 27, 240, 834, 1039, 321, 7, 0, 1, 35, 428, 2250, 5037, 4083, 769, 8, 0, 1, 44, 707, 5214, 18201, 27918, 15274, 1793, 9, 0, 1, 54, 1102, 10829, 54111, 133530, 145777, 55152, 4097, 10, 0
Offset: 0
The first few triangle rows are:
[1]
[1, 0]
[1, 2, 0]
[1, 5, 3, 0]
[1, 9, 17, 4, 0]
[1, 14, 52, 49, 5, 0]
The first few M(x,m) are:
M(x,m=0) = 1
M(x,m=1) = 1 + 0*x
M(x,m=2) = 1 + 2*x + 0*x^2
M(x,m=3) = 1 + 5*x + 3*x^2 + 0*x^3
The first few ST(x,m) are:
ST(x,m=-1) = 1
ST(x,m=0) = 1 + 0*x
ST(x,m=1) = 1 + 1*x + 0*x^2
ST(x,m=2) = 1 + 3*x + x^2 + 0*x^3
ST(x,m=3) = 1 + 6*x + 7*x^2 + x^3 + 0*x^4
The first few g(x,m) are:
g(x,-1) = (-1)*(- (1)*Ei(1,1/x)*exp(1/x))/x^0
g(x,0) = (1)*((1)*x - (1)*Ei(1,1/x)*exp(1/x))/x^1
g(x,1) = (-1)*((1)*x - (1+ x)*Ei(1,1/x)*exp(1/x))/x^2
g(x,2) = (1)*((1+2*x)*x - (1+3*x+x^2)*Ei(1,1/x)*exp(1/x))/x^3
g(x,3) = (-1)*((1+5*x+3*x^2)*x - (1+6*x+7*x^2+x^3)*Ei(1,1/x)*exp(1/x))/x^4
The row sums equal
A040027 (Gould).
-
nmax := 10; for p from 1 to nmax do Gf(p) := convert(series(1/((1-(p-1)*x)^2*product((1-k1*x), k1=1..p-2)), x, nmax+1-p), polynom); for q from 0 to nmax-p do a(p+q-1, q) := coeff(Gf(p), x, q) od: od: seq(seq(a(n, k), k=0..n), n=0..nmax-1);
# End program 1
nmax1:=nmax; A040027 := proc(n): if n = -1 then 0 elif n= 0 then 1 else add(binomial(n, k1-1)*A040027(n-k1), k1 = 1..n) fi: end: A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i) * A000110(n-1-i), i=0..n-1); fi; end: A073003 := - exp(1) * Ei(-1): for n from -1 to nmax1 do g(1, n) := (-1)^n * (A040027(n) - A000110(n+1) * A073003) od;
# End program 2
-
nmax = 11;
For[p = 1, p <= nmax, p++, gf = 1/((1-(p-1)*x)^2*Product[(1-k1*x), {k1, 1, p-2}]) + O[x]^(nmax-p+1) // Normal; For[q = 0, q <= nmax-p, q++, a[p+q-1, q] = Coefficient[gf, x, q]]];
Table[a[n, k], {n, 0, nmax-1}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019, from 1st Maple program *)
Original entry on oeis.org
1, 6, 360, 45360, 5443200, 359251200, 5884534656000, 35307207936000, 144053408378880000, 1034591578977116160000, 3414152210624483328000000, 471153005066178699264000000, 15434972445968014187888640000000, 92609834675808085127331840000000, 161141112335906068121557401600000000
Offset: 1
Original entry on oeis.org
1, 2, 3, 1, 0, 20, 96, 155, 90, 5, -6, 0, 280, 2772, 10518, 18711, 14385, 1323, -2863, -126, 360, 0, 2800, 47040, 323336, 1157760, 2238855, 2050020, 207158, -810600, -58505, 322740, 7956, -45360, 0, 12320, 314160, 3409472, 20401128, 72418826, 150057435, 154651321, 12413874, -101524412, -6408765, 82588957, 3394248, -37374084, -546480, 5443200, 0
Offset: 0
The sequence of polynomials begins:
Q^(2)_0=1,
Q^(2)_1=(2*x^3+3*x^2+x)/6,
Q^(2)_2=(20*x^6+96*x^5+155*x^4+90*x^3+5*x^2-6*x)/360,
Q^(2)_3=(280*x^9+2772*x^8+10518*x^7+18711*x^6+14385*x^5+1323*x^4-2863*x^3 -126*x^2+360*x)/45360.
A202941
For n>=0, let n!^(2)=A202367(n+1) and, for 0<=m<=n, C^(2)(n,m)=n!^(2)/(m!^(2)*(n-m)!^(2)). The sequence gives triangle of numbers C^(2)(n,m) with rows of length n+1.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 21, 21, 1, 1, 20, 42, 20, 1, 1, 11, 22, 22, 11, 1, 1, 2730, 3003, 2860, 3003, 2730, 1, 1, 1, 273, 143, 143, 273, 1, 1
Offset: 0
Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1....10.....1
.3..|..1....21 ...21.....1
.4..|..1....20....42....20.....1
.5..|..1....11....22....22....11.....1
.6..|..1..2730..3003..2860..3003..2730.....1
.7..|..1.....1...273...143...143...273.....1.....1
.8..|
A075267
Denominator of the coefficient of x^n in log(-log(1-x)/x).
Original entry on oeis.org
2, 24, 8, 2880, 288, 362880, 17280, 29030400, 89600, 958003200, 17418240, 31384184832000, 402361344000, 62768369664000, 295206912, 512189896458240000, 342372925440000, 919636959090769920000, 5377993912811520000, 674400436666564608000000, 89903156428800000
Offset: 1
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(-Log(1-x)/x) )); [Denominator(b[n]): n in [1..m-2]]; // G. C. Greubel, Oct 29 2018
-
S:= series(log(-log(1-x)/x),x,51):
seq(denom(coeff(S,x,j)),j=1..50); # Robert Israel, May 17 2016
-
Denominator[ CoefficientList[ Series[ Log[ -Log[1 - x]/x], {x, 0, 18}], x]]
A163972
The MC polynomials.
Original entry on oeis.org
1, 0, 3, 1, 0, 2, 45, 22, 3, 0, 0, 10, 107, 61, 13, 1, 0, -48, 20, 2100, 14855, 9168, 2390, 300, 15, 0, 0, -336, 92, 6320, 33765, 21803, 6378, 1010, 85, 3, 0, 11520, -2016, -198296, 33012, 2199246, 9547461, 6331782, 1994265, 362474, 39375, 2394, 63
Offset: 1
The a(n,p) formulas of the first few left hand columns of the A163940 triangle (p is the column number):
a(n,1) = (1)/1
a(n,2) = (0 + 3*n + n^2)/2
a(n,3) = (0 + 2*n + 45*n^2+ 22*n^3 + 3*n^4)/24
a(n,4) = (0 + 0*n + 10*n^2 + 107*n^3 + 61*n^4 + 13*n^5 + n^6)/48
a(n,5) = (0 - 48*n + 20*n^2 + 2100*n^3 + 14855*n^4 + 9168*n^5 + 2390*n^6 + 300*n^7 + 15*n^8)/5760
a(n,6) = (0 + 0*n -336*n^2 +92*n^3 +6320*n^4 +33765*n^5 +21803*n^6 +6378*n^7 +1010*n^8 +85*n^9 +3*n^10)/11520
a(n,7) = (0 + 11520*n -2016*n^2 -198296*n^3 +33012*n^4 +2199246*n^5 +9547461*n^6+ 6331782*n^7 +1994265*n^8 +362474*n^9 +39375*n^10 +2394*n^11 +63*n^12)/2903040
- Johannes W. Meijer, The zeros of the MC polynomials, pdf and jpg.
-
pmax:=6; nmax:=70; with(genfunc): A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [$2..n]); r:=1; for p in P do s := 0: q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: for px from 1 to nmax do Gf(px):= convert(series(1/((1-(px-1)*x)^2*product((1-k*x), k=1..px-2)),x,nmax+1-px),polynom): for qy from 0 to nmax-px do a(px+qy,qy):=coeff(Gf(px),x,qy) od; od: for p from 1 to pmax do f(x):=0: for ny from p to nmax do f(x):=f(x)+a(ny,p-1)*x^(ny-p) od: f(x):= series(f(x),x, nmax): Gx:=convert(%, ratpoly): rgf_sequence('recur',Gx,x,G,n): a(n,p):=sort(simplify (rgf_expand(Gx,x,n)),n): f(p):=sort(a(n,p)*A053657(p),n,ascending): for k from 0 to 2*p-2 do an(p,k):= coeff(f(p),n,k) od; od: T:=1: for p from 1 to pmax do for k from 0 to 2*p-2 do a(T):=an(p,k): T:=T+1 od: od: seq(a(n),n=1..T-1); for p from 1 to pmax do seq(an(p,k),k=0..2*p-2) od; for p from 1 to pmax do MC(n,p):=sort(a(n,p),n,ascending) od;
A185633
For odd n, a(n) = 2; for even n, a(n) = denominator of Bernoulli(n)/n; The number 2 alternating with the elements of A006953.
Original entry on oeis.org
2, 12, 2, 120, 2, 252, 2, 240, 2, 132, 2, 32760, 2, 12, 2, 8160, 2, 14364, 2, 6600, 2, 276, 2, 65520, 2, 12, 2, 3480, 2, 85932, 2, 16320, 2, 12, 2, 69090840, 2, 12, 2, 541200, 2, 75852, 2, 2760, 2, 564, 2, 2227680, 2, 132, 2, 6360
Offset: 1
-
A185633 := proc(n)
A053657(n+1)/A053657(n) ;
end proc: # R. J. Mathar, Dec 19 2012
-
max = 52; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, max}]]]; a[n_, k_] := Denominator[Coefficient[s, x^n*z^k]]; A053657 = Prepend[LCM @@@ Table[a[n, k], {n, max}, {k, n}], 1]; a[n_] := A053657[[n+1]]/A053657[[n]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 20 2012 *)
-
A185633(n) = if(n%2,2,denominator(bernfrac(n)/(n))); \\ Antti Karttunen, Dec 03 2018
-
A185633(n) = { my(m=1); fordiv(n, d, if(isprime(1+d), m *= (1+d)^(1+valuation(n,1+d)))); (m); }; \\ Antti Karttunen, Dec 03 2018
Original entry on oeis.org
1, 4, 672, 13440, 58705920, 234823680, 11243357798400, 494707743129600, 4321766843980185600, 86435336879603712000, 450155234468976132096000
Offset: 1
Original entry on oeis.org
1, 30, 1800, 14742000, 30073680000, 49621572000000, 812801349360000000, 707137173943200000000, 2885119669688256000000000, 49833835369821036293760000000000, 6742517925536786210545728000000000000
Offset: 1
A186430
Generalized Pascal triangle associated with the set of primes.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 12, 12, 1, 1, 2, 12, 2, 1, 1, 120, 120, 120, 120, 1, 1, 2, 120, 20, 120, 2, 1, 1, 252, 252, 2520, 2520, 252, 252, 1, 1, 2, 252, 42, 2520, 42, 252, 2, 1, 1, 240, 240, 5040, 5040, 5040, 5040, 240, 240, 1, 1, 2, 240, 40, 5040, 84, 5040, 40, 240, 2, 1
Offset: 0
Triangle begins:
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....1
.3..|..1....12....12.....1
.4..|..1.....2....12.....2.....1
.5..|..1...120...120...120...120.....1
.6..|..1.....2...120....20...120.....2.....1
.7..|..1...252...252..2520..2520...252...252.....1
-
#A186430
#Uses program for A053657 written by Peter Luschny
A053657 := proc(n) local P, p, q, s, r;
P := select(isprime, [$2..n]); r:=1;
for p in P do s := 0; q := p-1;
do if q > (n-1) then break fi;
s := s + iquo(n-1, q); q := q*p; od;
r := r * p^s; od; r end:
T := (n,k) -> A053657(n)/(A053657(k)*A053657(n-k)):
for n from 0 to 10 do
seq(T(n,k),k = 0..n)
end do;
-
b[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}];
T[n_, k_] := b[n]/(b[k] b[n - k]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 22 2019 *)
Comments