cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A163940 Triangle related to the divergent series 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ... for m >= -1.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 9, 17, 4, 0, 1, 14, 52, 49, 5, 0, 1, 20, 121, 246, 129, 6, 0, 1, 27, 240, 834, 1039, 321, 7, 0, 1, 35, 428, 2250, 5037, 4083, 769, 8, 0, 1, 44, 707, 5214, 18201, 27918, 15274, 1793, 9, 0, 1, 54, 1102, 10829, 54111, 133530, 145777, 55152, 4097, 10, 0
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The divergent series g(x,m) = Sum_{k >= 1} (-1)^(k+1)*k^m*k!*x^k, m >= -1, are related to the higher order exponential integrals E(x,m,n=1), see A163931.
Hardy, see the link below, describes how Euler came to the rather surprising conclusion that g(x,-1) = exp(1/x)*Ei(1,1/x) with Ei(1,x) = E(x,m=1,n=1). From this result it follows inmediately that g(x,0) = 1 - g(x,-1). Following in Euler's footsteps we discovered that g(x,m) = (-1)^(m) * (M(x,m)*x - ST(x,m)* Ei(1,1/x) * exp(1/x))/x^(m+1), m => -1.
So g(x=1,m) = (-1)^m*(A040027(m) - A000110 (m+1)*A073003), with A040027(m = -1) = 0. We observe that A073003 = - exp(1)*Ei(-1) is Gompertz's constant, A000110 are the Bell numbers and A040027 was published a few years ago by Gould.
The polynomial coefficients of the M(x,m) = Sum_{k = 0..m} a(m,k) * x^k, for m >= 0, lead to the triangle given above. We point out that M(x,m=-1) = 0.
The polynomial coefficients of the ST(x,m) = Sum_{k = 0..m+1} S2(m+1, k) * x^k, m >= -1, lead to the Stirling numbers of the second kind, see A106800.
The formulas that generate the coefficients of the left hand columns lead to the Minkowski numbers A053657. We have a closer look at them in A163972.
The right hand columns have simple generating functions, see the formulas. We used them in the first Maple program to generate the triangle coefficients (n >= 0 and 0 <= k <= n). The second Maple program calculates the values of g(x,m) for m >= -1, at x=1.

Examples

			The first few triangle rows are:
  [1]
  [1, 0]
  [1, 2, 0]
  [1, 5, 3, 0]
  [1, 9, 17, 4, 0]
  [1, 14, 52, 49, 5, 0]
The first few M(x,m) are:
  M(x,m=0) = 1
  M(x,m=1) = 1 + 0*x
  M(x,m=2) = 1 + 2*x + 0*x^2
  M(x,m=3) = 1 + 5*x + 3*x^2 + 0*x^3
The first few ST(x,m) are:
  ST(x,m=-1) = 1
  ST(x,m=0) = 1 + 0*x
  ST(x,m=1) = 1 + 1*x + 0*x^2
  ST(x,m=2) = 1 + 3*x + x^2 + 0*x^3
  ST(x,m=3) = 1 + 6*x + 7*x^2 + x^3 + 0*x^4
The first few g(x,m) are:
  g(x,-1) = (-1)*(- (1)*Ei(1,1/x)*exp(1/x))/x^0
  g(x,0) = (1)*((1)*x - (1)*Ei(1,1/x)*exp(1/x))/x^1
  g(x,1) = (-1)*((1)*x - (1+ x)*Ei(1,1/x)*exp(1/x))/x^2
  g(x,2) = (1)*((1+2*x)*x - (1+3*x+x^2)*Ei(1,1/x)*exp(1/x))/x^3
  g(x,3) = (-1)*((1+5*x+3*x^2)*x - (1+6*x+7*x^2+x^3)*Ei(1,1/x)*exp(1/x))/x^4
		

Crossrefs

The row sums equal A040027 (Gould).
A000007, A000027, A000337, A163941 and A163942 are the first five right hand columns.
A000012, A000096, A163943 and A163944 are the first four left hand columns.
Cf. A163931, A163972, A106800 (Stirling2), A000110 (Bell), A073003 (Gompertz), A053657 (Minkowski), A014619.

Programs

  • Maple
    nmax := 10; for p from 1 to nmax do Gf(p) := convert(series(1/((1-(p-1)*x)^2*product((1-k1*x), k1=1..p-2)), x, nmax+1-p), polynom); for q from 0 to nmax-p do a(p+q-1, q) := coeff(Gf(p), x, q) od: od: seq(seq(a(n, k), k=0..n), n=0..nmax-1);
    # End program 1
    nmax1:=nmax; A040027 := proc(n): if n = -1 then 0 elif n= 0 then 1 else add(binomial(n, k1-1)*A040027(n-k1), k1 = 1..n) fi: end: A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i) * A000110(n-1-i), i=0..n-1); fi; end: A073003 := - exp(1) * Ei(-1): for n from -1 to nmax1 do g(1, n) := (-1)^n * (A040027(n) - A000110(n+1) * A073003) od;
    # End program 2
  • Mathematica
    nmax = 11;
    For[p = 1, p <= nmax, p++, gf = 1/((1-(p-1)*x)^2*Product[(1-k1*x), {k1, 1, p-2}]) + O[x]^(nmax-p+1) // Normal; For[q = 0, q <= nmax-p, q++, a[p+q-1, q] = Coefficient[gf, x, q]]];
    Table[a[n, k], {n, 0, nmax-1}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019, from 1st Maple program *)

Formula

The generating functions of the right hand columns are Gf(p, x) = 1/((1 - (p-1)*x)^2 * Product_{k = 1..p-2} (1-k*x) ); Gf(1, x) = 1. For the first right hand column p = 1, for the second p = 2, etc..
From Peter Bala, Jul 23 2013: (Start)
Conjectural explicit formula: T(n,k) = Stirling2(n,n-k) + (n-k)*Sum_{j = 0..k-1} (-1)^j*Stirling2(n, n+1+j-k)*j! for 0 <= k <= n.
The n-th row polynomial R(n,x) appears to satisfy the recurrence equation R(n,x) = n*x^(n-1) + Sum_{k = 1..n-1} binomial(n,k+1)*x^(n-k-1)*R(k,x). The row polynomials appear to have only real zeros. (End)

Extensions

Edited by Johannes W. Meijer, Sep 23 2012

A202367 LCM of denominators of the coefficients of polynomials Q^(2)m(n) defined by the recursion Q^(2)_0(n)=1; for m >= 1, Q^(2)_m(n) = Sum{i=1..n} i^2*Q^(2)_(m-1)(i).

Original entry on oeis.org

1, 6, 360, 45360, 5443200, 359251200, 5884534656000, 35307207936000, 144053408378880000, 1034591578977116160000, 3414152210624483328000000, 471153005066178699264000000, 15434972445968014187888640000000, 92609834675808085127331840000000, 161141112335906068121557401600000000
Offset: 1

Views

Author

Keywords

Comments

See comment in A175669.

Crossrefs

Formula

Conjecture: a(n) = Product_{primes p} p^(Sum_{k>=0} floor((n-1)/(ceiling((p-1)/2)*p^k))).
If the conjecture is true, then, for n >= 0, A007814(a(n+1)) = A007814(n!) + n.

A175669 Triangle of numerators of coefficients of the polynomial Q^(2)m(n) defined by the recursion Q^(2)_0(n)=1; for m>=1, Q^(2)_m(n) = Sum{i=1..n} i^2*Q^(2)_(m-1)(i). For m>=0, the denominator for all 3*m+1 terms of the m-th row is A202367(m+1).

Original entry on oeis.org

1, 2, 3, 1, 0, 20, 96, 155, 90, 5, -6, 0, 280, 2772, 10518, 18711, 14385, 1323, -2863, -126, 360, 0, 2800, 47040, 323336, 1157760, 2238855, 2050020, 207158, -810600, -58505, 322740, 7956, -45360, 0, 12320, 314160, 3409472, 20401128, 72418826, 150057435, 154651321, 12413874, -101524412, -6408765, 82588957, 3394248, -37374084, -546480, 5443200, 0
Offset: 0

Views

Author

Keywords

Comments

Consider sequence of sequences of polynomials {Q^(0)_m(x)}, {Q^(1)_m(x)},...,{Q^(r)_m(x)},..., such that in every sequence m=0,1,...
Sequence {Q^(r)m(x)} is defined by the recursion: Q^(r)_0(x)=1; for m>=1 and integer x=n, Q^(r)_m(n)=sum{i=1,...,n}i^rQ^(r)(m-1)(i). By the induction, we see that polynomial Q^(r)_m(x) has degree (r+1)*m. Note that Q^(0)_m(n) is C(n+m-1,m), Q^(1)_m(n)=S(n+m,n), where S(k,l) are Stirling numbers of the second kind. Thus Q^(r)_m(x) is an r-generalization of binomial coefficients and Stirling numbers of the second kind. Moreover, for every r, LCM of denominators of the coefficients of Q^(r)_m(x) generate sequences of factorial type which possess important arithmetic properties. For r=0, it is n!, for r=1, it is A053657, for r=2,3,4 we obtain A202367, A202368, A202369. Denote the general term of the sequence corresponding to a given r by n!^(r) and, for 0<=m<=n, denote C^(r)(n,m)=n!^(r)/(m!^(r)*(n-m)!^(r). Then, for the "r-Pascal triangle", we have the following conjectural regularity: if a prime p==1 mod r, then the ((p-1)/r)-th row contains two 1's and numbers multiple of p. Cf. triangles A202917, A202941.

Examples

			The sequence of polynomials begins:
Q^(2)_0=1,
Q^(2)_1=(2*x^3+3*x^2+x)/6,
Q^(2)_2=(20*x^6+96*x^5+155*x^4+90*x^3+5*x^2-6*x)/360,
Q^(2)_3=(280*x^9+2772*x^8+10518*x^7+18711*x^6+14385*x^5+1323*x^4-2863*x^3 -126*x^2+360*x)/45360.
		

Crossrefs

Formula

Q^(2)_n(1)=1.

A202941 For n>=0, let n!^(2)=A202367(n+1) and, for 0<=m<=n, C^(2)(n,m)=n!^(2)/(m!^(2)*(n-m)!^(2)). The sequence gives triangle of numbers C^(2)(n,m) with rows of length n+1.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 21, 21, 1, 1, 20, 42, 20, 1, 1, 11, 22, 22, 11, 1, 1, 2730, 3003, 2860, 3003, 2730, 1, 1, 1, 273, 143, 143, 273, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Conjecture. If p is an odd prime, then the ((p-1)/2)-th row contains two 1's and (p-3)/2 numbers multiple of p.
See also comments in A175669 and A202917.

Examples

			Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1....10.....1
.3..|..1....21 ...21.....1
.4..|..1....20....42....20.....1
.5..|..1....11....22....22....11.....1
.6..|..1..2730..3003..2860..3003..2730.....1
.7..|..1.....1...273...143...143...273.....1.....1
.8..|
		

Crossrefs

Formula

If conjectural formula in A202367 is true, then A007814(C^(2)(n,m)) =A007814(C(n,m)).

A075267 Denominator of the coefficient of x^n in log(-log(1-x)/x).

Original entry on oeis.org

2, 24, 8, 2880, 288, 362880, 17280, 29030400, 89600, 958003200, 17418240, 31384184832000, 402361344000, 62768369664000, 295206912, 512189896458240000, 342372925440000, 919636959090769920000, 5377993912811520000, 674400436666564608000000, 89903156428800000
Offset: 1

Views

Author

Paul D. Hanna, Sep 15 2002

Keywords

Crossrefs

Cf. A075266 (numerator), A075264, A053657.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(-Log(1-x)/x) )); [Denominator(b[n]): n in [1..m-2]]; // G. C. Greubel, Oct 29 2018
  • Maple
    S:= series(log(-log(1-x)/x),x,51):
    seq(denom(coeff(S,x,j)),j=1..50); # Robert Israel, May 17 2016
  • Mathematica
    Denominator[ CoefficientList[ Series[ Log[ -Log[1 - x]/x], {x, 0, 18}], x]]

Formula

a(n) = denominator(Sum_{k=1..n} (k-1)!*(-1)^(n-k-1)*binomial(n,k)*Stirling1(n+k,k)/(n+k)!). - Vladimir Kruchinin, Aug 14 2025

Extensions

Edited by Robert G. Wilson v, Sep 17 2002

A163972 The MC polynomials.

Original entry on oeis.org

1, 0, 3, 1, 0, 2, 45, 22, 3, 0, 0, 10, 107, 61, 13, 1, 0, -48, 20, 2100, 14855, 9168, 2390, 300, 15, 0, 0, -336, 92, 6320, 33765, 21803, 6378, 1010, 85, 3, 0, 11520, -2016, -198296, 33012, 2199246, 9547461, 6331782, 1994265, 362474, 39375, 2394, 63
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The a(n,p) polynomials, see below with the extra p for the column number, generate the coefficients of the left hand columns of triangle A163940. These polynomials are interesting in their own right. They have many curious properties; e.g., for p >= 1: a(n=1, p) = p, a(n=0, p) = 0, a(n = -1, p) = (-1)^(p+1), a(n=-2,p) = (-1)^(p+1)*(2)^(p-2) and a(n = -(2*p+1), 2*p) = 0, which is the outermost zero of the a(n, 2*p); for p >= 10: a(n=-10, p) = -362880*10^(p-10); etc.
The numbers in the denominators of the a(n,p) are the Minkowski numbers A053657.
The Maple program generates the coefficients of the polynomials that appear in the numerators of the a(n,p), see the sequence above. We have made use of a nice little program that Peter Luschny recently wrote for the Minkowski numbers! For the an(p,k) in the Maple program for p >= 1 we have 0 <= k <= (2*p-2). A word of caution: The value of nmax has to be chosen sufficiently large in order to let Maple find the o.g.f.s.
The zero patterns of the a(n,p) polynomials resemble the Montezuma Cypress (Taxodium mucronatum). A famous Montezuma Cypress is 'El Arbol del Tule' (the Tule tree) in Mexico. It is the second stoutest tree in the world, circumference 36 meters, and is approximately 1500 years old. Considering this I propose to call the a(n,p) polynomials the MC polynomials.
The row sums equal n*A053657(n). [Johannes W. Meijer, Nov 29 2012]

Examples

			The a(n,p) formulas of the first few left hand columns of the A163940 triangle (p is the column number):
a(n,1) = (1)/1
a(n,2) = (0 + 3*n + n^2)/2
a(n,3) = (0 + 2*n + 45*n^2+ 22*n^3 + 3*n^4)/24
a(n,4) = (0 + 0*n + 10*n^2 + 107*n^3 + 61*n^4 + 13*n^5 + n^6)/48
a(n,5) = (0 - 48*n + 20*n^2 + 2100*n^3 + 14855*n^4 + 9168*n^5 + 2390*n^6 + 300*n^7 + 15*n^8)/5760
a(n,6) = (0 + 0*n -336*n^2 +92*n^3 +6320*n^4 +33765*n^5 +21803*n^6 +6378*n^7 +1010*n^8 +85*n^9 +3*n^10)/11520
a(n,7) = (0 + 11520*n -2016*n^2 -198296*n^3 +33012*n^4 +2199246*n^5 +9547461*n^6+ 6331782*n^7 +1994265*n^8 +362474*n^9 +39375*n^10 +2394*n^11 +63*n^12)/2903040
		

Crossrefs

A000012, A000096, A163943 and A163944 are the first four left hand columns of A163940.
Cf. A053657 (Minkowski), A163402 and A075264.

Programs

  • Maple
    pmax:=6; nmax:=70; with(genfunc): A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [$2..n]); r:=1; for p in P do s := 0: q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: for px from 1 to nmax do Gf(px):= convert(series(1/((1-(px-1)*x)^2*product((1-k*x), k=1..px-2)),x,nmax+1-px),polynom): for qy from 0 to nmax-px do a(px+qy,qy):=coeff(Gf(px),x,qy) od; od: for p from 1 to pmax do f(x):=0: for ny from p to nmax do f(x):=f(x)+a(ny,p-1)*x^(ny-p) od: f(x):= series(f(x),x, nmax): Gx:=convert(%, ratpoly): rgf_sequence('recur',Gx,x,G,n): a(n,p):=sort(simplify (rgf_expand(Gx,x,n)),n): f(p):=sort(a(n,p)*A053657(p),n,ascending): for k from 0 to 2*p-2 do an(p,k):= coeff(f(p),n,k) od; od: T:=1: for p from 1 to pmax do for k from 0 to 2*p-2 do a(T):=an(p,k): T:=T+1 od: od: seq(a(n),n=1..T-1); for p from 1 to pmax do seq(an(p,k),k=0..2*p-2) od; for p from 1 to pmax do MC(n,p):=sort(a(n,p),n,ascending) od;

A185633 For odd n, a(n) = 2; for even n, a(n) = denominator of Bernoulli(n)/n; The number 2 alternating with the elements of A006953.

Original entry on oeis.org

2, 12, 2, 120, 2, 252, 2, 240, 2, 132, 2, 32760, 2, 12, 2, 8160, 2, 14364, 2, 6600, 2, 276, 2, 65520, 2, 12, 2, 3480, 2, 85932, 2, 16320, 2, 12, 2, 69090840, 2, 12, 2, 541200, 2, 75852, 2, 2760, 2, 564, 2, 2227680, 2, 132, 2, 6360
Offset: 1

Views

Author

Paul Curtz, Dec 18 2012

Keywords

Comments

There is an integer sequence b(n) = A053657(n)/2^(n-1) = 1, 1, 6, 6, 360, 360, 45360, 45360, 5443200, 5443200,... which consists of the duplicated entries of A202367.
The ratios of this sequence are b(n+1)/b(n) = 1, 6, 1, 60, 1, 126 .... = a(n)/2, which is a variant of A036283.

Crossrefs

Cf. A006953, A007395 (bisections).
Cf. A006863, A027760, A067513, A322312, A322315 (rgs-transform).

Programs

  • Maple
    A185633 := proc(n)
        A053657(n+1)/A053657(n) ;
    end proc: # R. J. Mathar, Dec 19 2012
  • Mathematica
    max = 52; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, max}]]]; a[n_, k_] := Denominator[Coefficient[s, x^n*z^k]]; A053657 = Prepend[LCM @@@ Table[a[n, k], {n, max}, {k, n}], 1]; a[n_] := A053657[[n+1]]/A053657[[n]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 20 2012 *)
  • PARI
    A185633(n) = if(n%2,2,denominator(bernfrac(n)/(n))); \\ Antti Karttunen, Dec 03 2018
    
  • PARI
    A185633(n) = { my(m=1); fordiv(n, d, if(isprime(1+d), m *= (1+d)^(1+valuation(n,1+d)))); (m); }; \\ Antti Karttunen, Dec 03 2018

Formula

a(n) = A053657(n+1)/A053657(n).
a(2*n) = 2*A036283(n).
From Antti Karttunen, Dec 03 2018: (Start)
a(n) = Product_{d|n} [(1+d)^(1+A286561(n,1+d))]^A010051(1+d) - after Peter J. Cameron's Mar 25 2002 comment in A006863.
A007947(a(n)) = A027760(n)
A001221(a(n)) = A067513(n).
A181819(a(n)) = A322312(n).
(End)

Extensions

Name edited by Antti Karttunen, Dec 03 2018

A202368 LCM of denominators of the coefficients of polynomials Q^(3)m(n) defined by the recursion Q^(3)_0(n)=1; for m>=1,Q^(3)_m(n)=sum{i=1,...,n}i^3*Q^(3)(m-1)(i).

Original entry on oeis.org

1, 4, 672, 13440, 58705920, 234823680, 11243357798400, 494707743129600, 4321766843980185600, 86435336879603712000, 450155234468976132096000
Offset: 1

Views

Author

Keywords

Comments

See comment in A175669.

Crossrefs

A202369 LCM of denominators of the coefficients of polynomials Q^(4)m(n)defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)(m-1)(i).

Original entry on oeis.org

1, 30, 1800, 14742000, 30073680000, 49621572000000, 812801349360000000, 707137173943200000000, 2885119669688256000000000, 49833835369821036293760000000000, 6742517925536786210545728000000000000
Offset: 1

Views

Author

Keywords

Comments

See comment in A175669.

Crossrefs

A186430 Generalized Pascal triangle associated with the set of primes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 12, 12, 1, 1, 2, 12, 2, 1, 1, 120, 120, 120, 120, 1, 1, 2, 120, 20, 120, 2, 1, 1, 252, 252, 2520, 2520, 252, 252, 1, 1, 2, 252, 42, 2520, 42, 252, 2, 1, 1, 240, 240, 5040, 5040, 5040, 5040, 240, 240, 1, 1, 2, 240, 40, 5040, 84, 5040, 40, 240, 2, 1
Offset: 0

Views

Author

Peter Bala, Feb 21 2011

Keywords

Comments

Given a subset S of the integers Z, Bhargava has shown how to associate with S a generalized factorial function, denoted n!_S, sharing many properties of the classical factorial function n! (which corresponds to the choice S = Z). In particular, he shows that the generalized binomial coefficients n!_S/(k!_S*(n-k)!_S) are always integral for any choice of S.
Here we take S = {2,3,5,7,...} the set of primes.
The generalized factorial n!S is given by the formula n!_S = Product{primes p} p^(floor(n/(p-1)) + floor(n/(p^2-p)) + floor(n/(p^3-p^2)) + ...), and appears in the database as n!_S = A053657(n) for n>=1. We make the convention that 0!_S = 1.
See A186432 for the generalized Pascal triangle associated with the set of squares.

Examples

			Triangle begins:
  n/k.|..0.....1.....2.....3.....4.....5.....6.....7
  ==================================================
  .0..|..1
  .1..|..1.....1
  .2..|..1.....2.....1
  .3..|..1....12....12.....1
  .4..|..1.....2....12.....2.....1
  .5..|..1...120...120...120...120.....1
  .6..|..1.....2...120....20...120.....2.....1
  .7..|..1...252...252..2520..2520...252...252.....1
		

Crossrefs

Programs

  • Maple
    #A186430
    #Uses program for A053657 written by Peter Luschny
    A053657 := proc(n) local P, p, q, s, r;
    P := select(isprime, [$2..n]); r:=1;
    for p in P do s := 0; q := p-1;
    do if q > (n-1) then break fi;
    s := s + iquo(n-1, q); q := q*p; od;
    r := r * p^s; od; r end:
    T := (n,k) -> A053657(n)/(A053657(k)*A053657(n-k)):
    for n from 0 to 10 do
    seq(T(n,k),k = 0..n)
    end do;
  • Mathematica
    b[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}];
    T[n_, k_] := b[n]/(b[k] b[n - k]);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 22 2019 *)

Formula

T(n,k) = A053657(n)/(A053657(k)*A053657(n-k)), for n,k >= 0, with the convention that A053657(0) = 1.
Row sums A186431.
Previous Showing 11-20 of 37 results. Next