A053657 a(n) = Product_{p prime} p^{ Sum_{k>=0} floor[(n-1)/((p-1)p^k)]}.
1, 2, 24, 48, 5760, 11520, 2903040, 5806080, 1393459200, 2786918400, 367873228800, 735746457600, 24103053950976000, 48206107901952000, 578473294823424000, 1156946589646848000, 9440684171518279680000, 18881368343036559360000, 271211974879377138647040000
Offset: 1
A002657 Numerators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).
1, 1, 5, 9, 251, 475, 19087, 36799, 1070017, 2082753, 134211265, 262747265, 703604254357, 1382741929621, 8164168737599, 5362709743125, 8092989203533249, 15980174332775873, 12600467236042756559
Offset: 0
Comments
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers. [After the Danish mathematician Niels Erik Nørlund (1885-1981). - Amiram Eldar, Jun 17 2021]
The denominators are found in A002790. The alternating rational sequence ((-1)^n)*a(n)/A002790(n)is the z-sequence for the Stirling2 triangle A008277(n+1,k+1), n>=k>=0. This is the Sheffer (exp(x),exp(x)-1) triangle. See the W. Lang link under A006232 for Sheffer a- and z-sequences with references, and the conversion to S. Roman's notation. The a-sequence is A006232(n)/A006233(n). - Wolfdieter Lang, Oct 06 2011 [This is the Sheffer triangle A007318*A048993. Added Jun 20 2017]
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
Examples
1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
- Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
- N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Ibrahim M. Alabdulmohsin, The Language of Finite Differences, in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, 2018, pp. 133-149.
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
- Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
- Donghyun Kim and Jaeseong Oh, Extending the science fiction and the Loehr--Warrington formula, arXiv:2409.01041 [math.CO], 2024. See p. 32.
- Takao Komatsu, Convolution Identities for Cauchy Numbers of the Second Kind, Kyushu Journal of Mathematics, Vol. 69, No. 1 (2015), pp. 125-144.
- Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., Vol. 45, No. 2 (2007), pp. 133-137.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq., Vol. 17 (2014), Article 14.4.6.
- Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
- Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math., Vol. 306, No. 16 (2006), pp. 1906-1920.
- Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951. [Annotated scan of pages 135, 136 only]
- N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer, 1924, p. 461.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 461 [Annotated scanned copy of pages 144-151 and 456-463]
- Michael O. Rubinstein, Identities for the Riemann zeta function, Ramanujan J., Vol. 27, No. 1 (2012), pp. 29-42; arXiv preprint, arXiv:0812.2592 [math.NT], 2008-2009.
- Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., Vol. 309, No. 12 (2009), pp. 3830-3842.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 29 2018 -
Maple
seq(numer(add((-1)^(n-k)*Stirling1(n,k)/(k+1),k=0..n)),n=0..10); # Peter Luschny, Apr 28 2009
-
Mathematica
Table[Abs[Numerator[NorlundB[n,n]]],{n,0,30}](* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *) a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ NorlundB[ n, n]]; (* Michael Somos, Jul 12 2014 *) a[ n_] := If[ n < 0, 0, Numerator@Integrate[ Pochhammer[ x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *) a[ n_] := If[ n < 0, 0, Numerator[ n! SeriesCoefficient[ -x / ((1 - x) Log[ 1 - x]), {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *) a[ n_] := If[ n < 0, 0, (-1)^n Numerator[ n! SeriesCoefficient[ (x / (Exp[x] - 1))^n, {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
-
Maxima
v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1),i,0,n-1); makelist(num(n!*v(n)),n,0,10); /* Vladimir Kruchinin, Aug 28 2013 */
Formula
Numerator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). (Note: the numerator of the coefficient of x^n/n! is a(n). - Michael Somos, Jul 12 2014). E.g.f. rewritten by Iaroslav V. Blagouchine, May 07 2016
Numerator of Sum_{k=0..n} (-1)^(n-k) A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = numerator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
A002790 Denominators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).
1, 2, 6, 4, 30, 12, 84, 24, 90, 20, 132, 24, 5460, 840, 360, 16, 1530, 180, 7980, 840, 13860, 440, 1656, 720, 81900, 6552, 216, 112, 3480, 240, 114576, 7392, 117810, 2380, 1260, 72, 3838380, 207480, 32760, 560, 568260, 27720, 238392, 55440, 869400, 2576, 236880
Offset: 0
Comments
The numerators are given in A002657.
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers.
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
a(n) appears to be divisible by n+1. - Hal M. Switkay, Aug 15 2025
Examples
1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
- N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Ibrahim M. Alabdulmohsin, The Language of Finite Differences, in Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Cham, pp 133-149.
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
- Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
- C. H. Karlson & N. J. A. Sloane, Correspondence, 1974
- Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., 45 (2007), 133-137.
- Guo-Dong Liu, H. M. Srivastava, Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6.
- Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
- Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906-1920.
- L. M. Milne-Thompson, Calculus of Finite Differences, 1951. [Annotated scan of pages 135, 136 only]
- N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 461.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 461 [Annotated scanned copy of pages 144-151 and 456-463]
- Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., 309 (2009), 3830-3842.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Magma
m:=60; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Denominator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 28 2018 -
Maple
A002790 := proc(n) denom(add((-1)^k*Stirling1(n, k)/(k+1), k=0..n)) ; end proc: # Peter Luschny, Apr 28 2009 v := proc(n) option remember; ifelse(n=0, 1, 1 - add(v(i)/(n-i+1), i=0..n-1)) end: seq(denom(n!*v(n)), n = 0..46); # after Vladimir Kruchinin, Peter Luschny, Aug 17 2025
-
Mathematica
Table[ Denominator[ NorlundB[n, n]], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
-
Maxima
v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1),i,0,n-1); makelist(denom(n!*v(n)),n,0,10); /* Vladimir Kruchinin, Aug 28 2013 */
Formula
Denominator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). - Corrected by Iaroslav V. Blagouchine, May 07 2016.
Denominator of Sum_{k=0..n} (-1)^k A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = denominator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
A075266 Numerator of the coefficient of x^n in log(-log(1-x)/x).
0, 1, 5, 1, 251, 19, 19087, 751, 1070017, 2857, 26842253, 434293, 703604254357, 8181904909, 1166309819657, 5044289, 8092989203533249, 5026792806787, 12600467236042756559, 69028763155644023, 8136836498467582599787
Offset: 0
Comments
A series with these numerators leads to Euler's constant: gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A262235. - Iaroslav V. Blagouchine, Sep 15 2015
Links
- Robert Israel, Table of n, a(n) for n = 1..447
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only, Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Programs
-
Maple
S:= series(log(-log(1-x)/x),x,51): seq(numer(coeff(S,x,j)),j=0..50); # Robert Israel, May 17 2016 # Alternative: a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else 1 - add(r(k)/(n-k+1), k=0..n-1) fi end: numer(r(n)/(n*(n+1))) end: seq(a(n), n=0..20); # Peter Luschny, Apr 19 2018
-
Mathematica
Numerator[ CoefficientList[ Series[ Log[ -Log[1 - x]/x], {x, 0, 20}], x]]
-
SageMath
@cached_function def r(n): return 1 - sum(r(k)/(n-k+1) for k in range(n)) if n > 0 else 1 def a(n: int): return numerator(r(n)/(n*(n+1))) if n > 0 else 0 print([a(n) for n in range(21)]) # Peter Luschny, Aug 15 2025
Formula
a(n) = numerator(Sum_{k=1..n} (k-1)!*(-1)^(n-k-1)*binomial(n,k)*Stirling1(n+k,k)/(n+k)!). - Vladimir Kruchinin, Aug 14 2025
Extensions
Edited by Robert G. Wilson v, Sep 17 2002
a(0) = 0 prepended by Peter Luschny, Aug 15 2025
A262235 Denominators of a series leading to Euler's constant gamma.
4, 72, 32, 14400, 1728, 2540160, 138240, 261273600, 896000, 10538035200, 209018880, 407994402816000, 5633058816000, 941525544960000, 4723310592, 8707228239790080000, 6162712657920000, 17473102222724628480000, 107559878256230400000, 14162409169997856768000000
Offset: 1
Comments
Gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see the references below.
Examples
Denominators of 1/4, 5/72, 1/32, 251/14400, 19/1728, 19087/2540160, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Programs
-
Maple
a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else 1 - add(r(k)/(n-k+1), k=0..n-1) fi end: denom(r(n)/(n*(n+1))) end: seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
-
Mathematica
g[n_] := Sum[Abs[StirlingS1[n, l]]/(l + 1), {l, 1, n}]/(n*(n + 1)!); a[n_] := Denominator[g[n]]; Table[a[n], {n, 1, 20}]
A262856 Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.
1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
Offset: 1
Comments
gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.
Examples
Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Crossrefs
Programs
-
GAP
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),NumeratorRat); # Muniru A Asiru, Oct 29 2018
-
Magma
[Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
Mathematica
a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
PARI
a(n) = numerator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
Formula
a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.
A262858 Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.
12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
Offset: 1
Comments
gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.
Examples
Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Crossrefs
Programs
-
GAP
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),DenominatorRat); # Muniru A Asiru, Oct 29 2018
-
Magma
[Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
Mathematica
a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
PARI
a(n) = denominator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
Formula
a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
PARI
Formula
Extensions