cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 70 results. Next

A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,         1;
  0,         1,         3;
  0,        18,        21,       25;
  0,      1606,      1173,      774,      543;
  0,    565080,    271790,   122595,    59830,    29281;
  0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
  ...
		

Crossrefs

Column k=1 is A003030.
Main diagonal is A003024.
Row sums are A053763.
The unlabeled version is A361582.
Cf. A189898 (weak components), A361269 (loops allowed), A361591.

Programs

  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A361269(n,k)/2^n.

A361579 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 51, 12, 1, 0, 3614, 447, 34, 1, 0, 991930, 53675, 2885, 85, 1, 0, 1051469032, 21514470, 741455, 16665, 201, 1, 0, 4366988803688, 30405612790, 642187105, 9816380, 90678, 462, 1, 0, 71895397383029040, 160152273169644, 2024633081100, 19625842425, 122330544, 474138, 1044, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2023

Keywords

Comments

Here, a source-like component of a digraph D is a strongly connected component of D that corresponds to a node of in-degree 0 in the condensation of D.

Examples

			Triangle begins:
  1;
  0,      1;
  0,      3,     1;
  0,     51,    12,    1;
  0,   3614,   447,   34,  1;
  0, 991930, 53675, 2885, 85, 1;
  ...
		

Crossrefs

Cf. A003028 (column k=1), A053763 (row sums).

Programs

  • Mathematica
    nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
    ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid

A361592 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 18, 21, 0, 25, 1699, 1080, 774, 0, 543, 587940, 267665, 103860, 59830, 0, 29281, 750744901, 225144360, 64169325, 19791000, 10110735, 0, 3781503, 3556390155318, 672637205149, 126726655860, 29445913175, 7939815030, 3767987307, 0, 1138779265
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2023

Keywords

Examples

			Triangle begins:
       1;
       0,      1;
       1,      0,      3;
      18,     21,      0,    25;
    1699,   1080,    774,     0, 543;
  587940, 267665, 103860, 59830,   0, 29281;
  ...
		

Crossrefs

Cf. A086366 (column k=0), A003024 (main diagonal), A053763 (row sums), A361590 (unlabeled version).

Programs

  • Mathematica
    nn = 7; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggfz[Exp[-(s[x] - x + u x)]], {z, 0, nn}], {z,u}])[[i]], i], {i, 1, nn + 1}] // Grid

A363919 a(n) = n^excess(n), where excess(n) = A046660(n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 64, 9, 1, 1, 12, 1, 1, 1, 4096, 1, 18, 1, 20, 1, 1, 1, 576, 25, 1, 729, 28, 1, 1, 1, 1048576, 1, 1, 1, 1296, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 49, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 60, 1, 1, 63, 1073741824, 1, 1, 1, 68
Offset: 1

Views

Author

Keywords

Examples

			108 = 2^2 * 3^3 => excess(108) = 5 - 2 => a(108) = 108^3 = 1259712.
		

Crossrefs

Programs

  • Julia
    using Nemo
    exc(n::fmpz) = sum(e - 1 for (p, e) in factor(n))
    A363919(n::fmpz) = n < 2 ? fmpz(1) : n^exc(n)
    println([A363919(fmpz(n)) for n in 1:68])
    
  • Maple
    with(NumberTheory):
    A363919 := n -> n^(NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct')):
    # Alternative:
    a := n -> local i: n^add(i[2] - 1, i in ifactors(n)[2]): seq(a(n), n = 1..68);
  • Mathematica
    Array[#^(PrimeOmega[#] - PrimeNu[#]) &, 120]
  • PARI
    a(n) = my(f=factor(n)[, 2]); n^(vecsum(f)-#f); \\ Michel Marcus, Jul 16 2023
    
  • Python
    from sympy import factorint
    def A363919(n): return n**sum(map(lambda e:e-1,factorint(n).values())) # Chai Wah Wu, Jul 18 2023
  • SageMath
    def A363919(n):
        if n < 2: return 1
        return n^sum(p[1] - 1 for p in list(factor(n)))
    print([A363919(n) for n in srange(1, 69)])
    

Formula

a(n) = n^(Sum_{p in Factors(n)} (mult(p) - 1)), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
a(n) = A363923(n) / A205959(n).
a(n) = n^A046660(n) = n^(A001222(n) - A001221(n)).
a(n) = 1 or divisible by at least one squared prime.
a(n) = 1 <=> n is squarefree (A005117).
a(n) != 1 <=> A056170(n) != 0.
a(n) = n <=> n = A060687(n - 1) for n >= 2.
a(2^n) = 2^(n*(n - 1)) = A053763(n).
a(n) <= 2^(lb(n)*(lb(n)-1)), where lb(n) = floor(log_{2}(n)).
a(n) is even <=> n = 2*A337945(n).
a(n) > 1 is odd <=> n = A053850(n).
n is prime => a(n) = 1. ('prime' means term of A000040).
n is prime product => a(n) = 1. ('prime product' means term of A144338).
n is proper prime power => a(n) is proper prime power. ('proper prime power' means term of A246547).
Moebius(a(n)) = [a(n) = 1], where [ ] denotes the Iverson bracket.

A054593 Number of disconnected labeled digraphs with n nodes.

Original entry on oeis.org

0, 1, 10, 262, 21496, 6433336, 7566317200, 35247649746352, 648839620390462336, 47230175230392839683456, 13617860445102311268975051520, 15577054031612736747163633737901312
Offset: 1

Views

Author

Vladeta Jovovic, Apr 15 2000

Keywords

Crossrefs

The unlabeled case is A054590.
Cf. A003027, A053763 (not necessarily connected), A054592.

Formula

a(n) = 2^(n*(n-1)) - A003027(n).

A087615 Number of labeled cyclic preferences/voting outcomes, indifference and undecidedness/incompleteness permitted (Social Choice Theory).

Original entry on oeis.org

0, 0, 2, 488, 282912, 496045008
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Sep 12 2003

Keywords

Crossrefs

Cf. A087616 for the unlabeled analog, A003024, A087613, A053763.

Formula

a(n) = A053763(n) - A087613(n).

A110147 10^((n^2-n)/2).

Original entry on oeis.org

1, 1, 10, 1000, 1000000, 10000000000, 1000000000000000, 1000000000000000000000, 10000000000000000000000000000, 1000000000000000000000000000000000000
Offset: 0

Views

Author

Philippe Deléham, Sep 04 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A082148 = {1, 1, 11, 131, 1661, 22101, 305151, 4335711, ...}; example: det([1, 1, 11, 131; 1, 11, 131, 1661; 11, 131, 1661, 22101; 131, 1661, 22101, 305151]) = 10^6 = 1000000.
Also the Hankel transform of A379103. - Nathaniel Johnston, Dec 16 2024

Crossrefs

Programs

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(10i, j).
a(n)=10a(n-1)^2/a(n-2), a(0)=a(1)=1. - Michael Somos, Sep 12 2005

A138240 Expansion of (1/4)(1-sqrt(1-12x)/sqrt(1-4x)).

Original entry on oeis.org

0, 1, 6, 40, 296, 2400, 20928, 192768, 1848960, 18277888, 184890368, 1904259072, 19898765312, 210424545280, 2247494172672, 24209586782208, 262696649785344, 2868744309571584, 31504024885002240, 347697247933169664
Offset: 0

Views

Author

Paul Barry, Mar 07 2008

Keywords

Comments

Hankel transform of a(n) is -4^comb(n,2)*A099156(n)=-4^comb(n,2)*[x^n](x/(1-8x+4x^2)).
Hankel transform of a(n+1) is 4^comb(n+1,2)=A053763(n+1).
Hankel transform of a(n+2) is 4^comb(n+1,2)*A102591(n+1)=4^comb(n+1,2)*[x^n](6-4x)/(1-8x+4x^2).

Crossrefs

Cf. A104498.

Programs

  • Mathematica
    CoefficientList[Series[1/4*(1-Sqrt[1-12*x]/Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

Recurrence: n*a(n) = 4*(4*n-5)*a(n-1) - 48*(n-2)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(2*n-7/2)*3^(n+1/2)/(sqrt(Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012

A197927 The number of isolated nodes in all labeled directed graphs (with self loops allowed) on n nodes.

Original entry on oeis.org

0, 1, 4, 48, 2048, 327680, 201326592, 481036337152, 4503599627370496, 166020696663385964544, 24178516392292583494123520, 13944156602510523416463735259136, 31901471898837980949691369446728269824, 289909687580898100839964337544428699577745408
Offset: 0

Views

Author

Geoffrey Critzer, Oct 19 2011

Keywords

Comments

Here, isolated means indegree = outdegree = 0.
a(n) is also the number of directed graphs on [n] (no self loops allowed, A053763) with a distinguished vertex of indegree 0. - Geoffrey Critzer, Apr 01 2023

Crossrefs

Programs

  • Mathematica
    a = Sum[2^(n^2)x^n/n!, {n,0,20}]; Range[0,12]! CoefficientList[Series[x a, {x,0,12}], x]

Formula

E.g.f.: x*A(x) where A(x) = Sum_{n>=0} 2^(n^2)*x^n/n!.
a(n) = n * 2^((n-1)^2) = n*A002416(n-1).
Sum_{n>=0} a(n)*z^n/B(n) = z*Sum_{n>=0} A053763(n)*z^n/B(n) where B(n) = n!*2^binomial(n,2). - Geoffrey Critzer, Apr 01 2023

A217652 Number of isolated nodes over all labeled directed graphs on n nodes.

Original entry on oeis.org

0, 1, 2, 12, 256, 20480, 6291456, 7516192768, 35184372088832, 648518346341351424, 47223664828696452136960, 13617340432139183023890366464, 15576890575604482885591488987660288, 70778732319555200400381918345807787982848
Offset: 0

Views

Author

Geoffrey Critzer, Oct 09 2012

Keywords

Comments

a(n) = Sum_{k=1..n} A217580(n,k) * k.
a(n) is also the number of labeled directed graphs on n nodes with an "Emperor". - Rémy-Robert Joseph, Nov 12 2012

Crossrefs

See also A123903 (case of tournaments) and A219116 (case of semicomplete digraphs) Rémy-Robert Joseph, Nov 12 2012

Programs

  • Maple
    a:= n-> 2^(n^2-3*n+2)*n:
    seq (a(n), n=0..15);  # Alois P. Heinz, Oct 09 2012
  • Mathematica
    nn=15; s=Sum[2^(n^2-n)x^n/n!,{n,0,nn}]; Range[0,nn]! CoefficientList[Series[x s, {x,0,nn}], x]
  • Maxima
    A217652(n):=2^(n^2-3*n+2)*n$ makelist(A217652(n),n,0,10); /* Martin Ettl, Nov 13 2012 */

Formula

E.g.f.: x * A(x) where A(x) is the e.g.f. for A053763.
a(n) = 2^(n^2-3*n+2)*n. - Alois P. Heinz, Oct 09 2012
Previous Showing 31-40 of 70 results. Next