A055142
Expansion of e.g.f.: exp(x)*sqrt(1-2x).
Original entry on oeis.org
1, 0, -2, -8, -36, -224, -1880, -19872, -251888, -3712256, -62286624, -1171487360, -24402416192, -557542291968, -13861636770176, -372514645389824, -10759590258589440, -332386419622387712
Offset: 0
-
CoefficientList[Series[E^x*Sqrt[1-2*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 29 2014 *)
-
def A055142(n):
@CachedFunction
def h(n):
return (-1)^n*2*(n-2)*abs(h(n-1)+h(n-2)) if n>1 else 1
return -(-1)^(n+1)*h(n+1)
[A055142(n) for n in (0..17)] # Peter Luschny, Nov 02 2012
A370366
Number A(n,k) of partitions of [k*n] into n sets of size k having no set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 9, 8, 0, 0, 1, 0, 34, 252, 60, 0, 0, 1, 0, 125, 5672, 14337, 544, 0, 0, 1, 0, 461, 125750, 2604732, 1327104, 6040, 0, 0, 1, 0, 1715, 2857472, 488360625, 2533087904, 182407545, 79008, 0, 0
Offset: 0
A(2,3) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 0, 2, 9, 34, 125, ...
0, 0, 8, 252, 5672, 125750, ...
0, 0, 60, 14337, 2604732, 488360625, ...
0, 0, 544, 1327104, 2533087904, 5192229797500, ...
-
A:= proc(n, k) `if`(k=0,`if`(n=0, 1, 0), add(
(-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
A088992
Derangement numbers d(n,5) where d(n,k) = k(n-1)(d(n-1,k) + d(n-2,k)), with d(0,k) = 1 and d(1,k) = 0.
Original entry on oeis.org
1, 0, 5, 50, 825, 17500, 458125, 14268750, 515440625, 21188375000, 976671703125, 49893003906250, 2797832158515625, 170863509745312500, 11287987223748828125, 802119551344589843750, 61005565392625400390625, 4944614795517599218750000
Offset: 0
A165968
Number of pairings disjoint to a given pairing, and containing a given pair not in the given pairing.
Original entry on oeis.org
0, 1, 2, 10, 68, 604, 6584, 85048, 1269680, 21505552, 407414816, 8535396256, 195927013952, 4890027052480, 131842951699328, 3818743350945664, 118253903175951104, 3898687202158805248, 136339489775029813760, 5040776996774472673792
Offset: 1
Lewis Mammel (l_mammel(AT)att.net), Oct 02 2009
a(1) = 0 trivially.
a(2) = 1 since there is a unique pairing disjoint to the canonical pairing, 01 23, and containing any of the 4 pairs not in the canonical pairing.
a(3) = 2 since there are 2 pairings disjoint to the canonical pairing, 01 23 45, and containing the pair 02, not in the canonical pairing: 02 14 35 and 02 15 34.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 3
- Michael De Vlieger, Table of n, a(n) for n = 1..405
- Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016).
- Marilena Barnabei, Niccolò Castronuovo, and Matteo Silimbani, Hertzsprung patterns on involutions, arXiv:2412.03449 [math.CO], 2024. See p. 10.
- Célia Biane, Greg Hampikian, Sergey Kirgizov, and Khaydar Nurligareev, Endhered patterns in matchings and RNA, arXiv:2404.18802 [math.CO], 2024. See pp. 8-9.
-
a:= n-> add((-1)^(n-k-1)*binomial(n-1,k)*(2*(k+1))!/(2^(k+1)*(k+1)!), k=0..n-1):
seq(a(n), n=0..20);
-
a[n_] := Sum[(-1)^(n-k-2)* Binomial[n-2, k]*(2*(k+1))!/(2^(k+1)*(k+1)!) , {k, 0, n-2}]; a /@ Range[20]
(* Jean-François Alcover, Jul 11 2011, after Maple *)
CoefficientList[Series[-1+1/(E^x*Sqrt[1-2*x]) + Sqrt[2]*DawsonF[1/Sqrt[2]] + Sqrt[-Pi/(2*E)]*Erf[Sqrt[-1/2+x]],{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Feb 04 2014 *)
-
define a(n)
{
auto sign, i,s;
s=0; sign = 1;
for ( i=0 ; i<=n-1 ; i++ ) {
s = s + sign * ffac(n-1-i) * c( n-2, i );
sign = sign * -1;
}
return s;
}
/* returns (2n-1)!! */
define ffac( n )
{
if ( n <= 1 ) return 1;
return (2*n-1)* ffac(n-1);
}
/* returns combinations of n things taken i at a time */
define c(n,i)
{
auto j,s;
s=1;
if ( n < 0 ) return 0;
for ( j=0 ; j
A289191
Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational symmetry.
Original entry on oeis.org
0, 2, 4, 22, 112, 1060, 11292, 149448, 2257288, 38720728, 740754220, 15648468804, 361711410384, 9081485302372, 246106843197984, 7160143986526240, 222595582448849152, 7364186944683168828, 258327454310582805036, 9577476294162996275928, 374205233351106756670120
Offset: 1
See
A053871 for tiles with no rotational symmetries being taken into account,
A289269 for tiles with rotational and reflectional symmetries being taken into account,
A289343 for the same statistic evaluated when n is prime.
-
a(n) = {sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n} \\ Andrew Howroyd, Jan 26 2020
A064280
Number of nonequivalent solutions to the order n checkerboard problem up to reflection and rotation: place n pieces on an n X n board so there is exactly one piece in each row, column and main diagonal.
Original entry on oeis.org
1, 0, 0, 1, 4, 12, 86, 696, 6150, 61760, 673256, 8137200, 105074420, 1479237312, 22077680616, 354753059584, 6007578698408, 108500041654272, 2055204828592832, 41215470268919040, 863378484993573840, 19036646809582054400, 436944006380312366240
Offset: 1
The 4 X 4 solution is unique, up to equivalence, with pieces at (1,1), (2,3), (3,4) and (4,2).
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Geoffrey Chase, Checkerboard Problem Solved, Creative Computing 6(1), Jan 1980, 122.
- Bahairiv Joshi, Unique Solutions to the Checkerboard Problem, Creative Computing 6(10), Oct 1980, 124-125.
- Abijah Reed, Comments on Checkerboard Problem Solved, Creative Computing 6(5), May 1980, 94.
A007016 gives the number of solutions including symmetrical ones.
-
sf = Subfactorial;
x[n_] := x[n] = Integrate[If[EvenQ[n], (x^2 - 4*x + 2)^(n/2), (x - 1)*(x^2 - 4*x + 2)^((n - 1)/2)]/E^x, {x, 0, Infinity}];
F[n_ /; EvenQ[n]] := With[{m = n/2}, m*(x[2*m] - (2*m - 3)*x[2*m - 1])];
F[n_ /; OddQ[n]] := With[{m = (n - 1)/2}, (2*m + 1)*x[2*m] + 3*m*x[2*m - 1] - 2*m*(m - 1)*x[2*m - 2]];
d[n_] := (-1)^n HypergeometricPFQ[{1/2, -n}, {}, 2];
R[n_] := If[OddQ[n], 0, If[n == 0, 1, (n - 1)!*2/(n/2 - 1)!]];
a[1] = 1; a[n_] := With[{m = Quotient[n, 2]}, (F[n] + If[EvenQ[n], 0, 2^m * sf[m] + 2*R[m] + 2*d[m] + 2*Boole[m == 0]])/8];
Array[a, 30] (* Jean-François Alcover, Sep 15 2019 *)
-
\\ here sf is A000166, F is A007016, D is A053871, R(n) is A037224(2n).
sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
F(n) = {my(v = vector(n)); for(n=4, length(v), v[n] = (n-1)*v[n-1] + 2*if(n%2==1, (n-1)*v[n-2], (n-2)*if(n==4,1,v[n-4]))); if(n<4, [1,0,0][n], if(n%2==0, n*(v[n] - (n-3)*v[n-1]), 2*n*v[n-1] + 3*(n-1)*v[n-2] - (n-1)*(n-3)*v[n-3])/2)}
D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))}
R(n) = {if(n%2==1, 0, if(n==0, 1, (n-1)!*2/(n/2-1)!))}
a(n) = {(F(n) + if(n%2==0, 0, my(m=n\2); 2^m * sf(m) + 2*R(m) + 2*D(m) + 2*(m==0)))/8} \\ Andrew Howroyd, Sep 12 2017
Name clarified and terms a(13) and beyond from
Andrew Howroyd, Sep 12 2017
A289269
Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational and reflectional, i.e. dihedral, symmetry.
Original entry on oeis.org
0, 2, 4, 19, 80, 638, 6054, 76692, 1137284, 19405244, 370597430, 7825459362, 180862277352, 4540781512946, 123053646087312, 3580073396748560, 111297799861936256, 3682093529146577694, 129163727524848878358, 4788738149626920381804, 187102616692953377567060
Offset: 1
See
A053871 for tiles with no symmetries being taken into account,
A289191 for tiles with rotational symmetries only being taken into account.
-
\\ here R(n) is A289191.
S(n)={sum(i=0, n\2, (-1)^i * sum(j=0, (n-2*i)\2, (2*j)!/j! * if(n%2, if(j, 2*binomial(n\2, i)*binomial(n-2*i-1, 2*j-1)), binomial(n/2, i)*binomial(n-2*i, 2*j) + if(j, binomial(n/2-1, i)*binomial(n-2*i-2, 2*j-2))) / 2))}
R(n)={sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n}
a(n)={(R(n) + S(n))/2} \\ Andrew Howroyd, Jan 26 2020
A054479
Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.
Original entry on oeis.org
1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..15); # Alois P. Heinz, Mar 06 2023
-
Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
-
x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 13 2013
A055141
Matrix inverse of triangle A055140.
Original entry on oeis.org
1, 0, 1, -2, 0, 1, -8, -6, 0, 1, -36, -32, -12, 0, 1, -224, -180, -80, -20, 0, 1, -1880, -1344, -540, -160, -30, 0, 1, -19872, -13160, -4704, -1260, -280, -42, 0, 1, -251888, -158976, -52640, -12544, -2520, -448, -56, 0, 1, -3712256, -2266992
Offset: 0
1; 0,1; -2,0,1; -8,-6,0,1; -36,-32,-12,0,1; ...
A155517
Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} for which the number of j < ceiling(n/2) such that p(j) + p(n+1-j) = n+1 is equal to k (n>=1; 0<=k <=ceiling(n/2)).
Original entry on oeis.org
0, 1, 0, 2, 4, 0, 2, 16, 0, 8, 64, 48, 0, 8, 384, 288, 0, 48, 2880, 1536, 576, 0, 48, 23040, 12288, 4608, 0, 384, 208896, 115200, 30720, 7680, 0, 384, 2088960, 1152000, 307200, 76800, 0, 3840, 23193600, 12533760, 3456000, 614400, 115200, 0, 3840, 278323200
Offset: 1
T(4,2)=8 because we have 1234, 4231, 1324, 4321, 2143, 3142, 2413 and 3412.
Triangle starts:
0, 1;
0, 2;
4, 0, 2;
16, 0, 8;
64, 48, 0, 8;
384, 288, 0, 48;
-
g[0] := 1: g[1] := 0: for n from 2 to 20 do g[n] := (2*(n-1))*(g[n-1]+g[n-2]) end do: T := proc (n, k) if `mod`(n, 2) = 0 then 2^((1/2)*n)*factorial((1/2)*n)*g[(1/2)*n-k]*binomial((1/2)*n, k) else 2^((1/2)*n-1/2)*factorial((1/2)*n-1/2)*g[(1/2)*n+1/2-k]*binomial((1/2)*n+1/2, k) end if end proc: for n to 12 do seq(T(n, k), k = 0 .. ceil((1/2)*n)) end do;
Comments