cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A135979 Indices n such that 2^prime(n)-1 has exactly 2 distinct prime factors.

Original entry on oeis.org

5, 9, 12, 13, 17, 19, 23, 25, 26, 27, 29, 32, 33, 34, 35, 39, 45, 46, 49, 53, 57, 58, 60, 62, 69, 74, 75, 82, 88, 93, 99, 129, 140, 152, 164, 166, 168, 178, 179
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

a(40)>=206. - Amiram Eldar, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, n]]], {n, 1, 40}]; k
    Select[Range[40],PrimeNu[2^Prime[#]-1]==2&] (* Harvey P. Dale, Jul 07 2013 *)

Formula

Equals {k: A001221(A001348(k)) = 2}. a(n) = A049084(A135978(n)). - R. J. Mathar, May 03 2008

Extensions

Edited by R. J. Mathar, May 03 2008
a(17)-a(34) from Donovan Johnson, Jun 14 2009
a(35)-a(39) from Amiram Eldar, Sep 29 2018

A155151 Triangle T(n, k) = 4*n*k + 2*n + 2*k + 2, read by rows.

Original entry on oeis.org

10, 16, 26, 22, 36, 50, 28, 46, 64, 82, 34, 56, 78, 100, 122, 40, 66, 92, 118, 144, 170, 46, 76, 106, 136, 166, 196, 226, 52, 86, 120, 154, 188, 222, 256, 290, 58, 96, 134, 172, 210, 248, 286, 324, 362, 64, 106, 148, 190, 232, 274, 316, 358, 400, 442, 70, 116, 162
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2009

Keywords

Comments

First column: A016957, second column: A017341, third column: 2*A017029, fourth column: A082286. - Vincenzo Librandi, Nov 21 2012
Conjecture: Let p = prime number. If 2^p belongs to the sequence, then 2^p-1 is not a Mersenne prime. - Vincenzo Librandi, Dec 12 2012
Conjecture is true because if T(n, k) = 2^p with p prime, then 2^p-1 = 4*n*k + 2*n + 2*k + 1 = (2*n+1)*(2*k+1) hence 2^p-1 is not prime. - Michel Marcus, May 31 2015
It appears that T(m,p) = 2^p for Lucasian primes (A002515) greater than 3. For instance: T(44, 11) = 2^11, T(89240, 23) = 2^23. - Michel Marcus, May 28 2015
For n > 1, ascending numbers along the diagonal are also terms of the even principal diagonal of a 2n X 2n spiral (A137928). - Avi Friedlich, May 21 2015

Examples

			Triangle begins
  10;
  16,  26;
  22,  36,  50;
  28,  46,  64,  82;
  34,  56,  78, 100, 122;
  40,  66,  92, 118, 144, 170;
  46,  76, 106, 136, 166, 196, 226;
  52,  86, 120, 154, 188, 222, 256, 290;
  58,  96, 134, 172, 210, 248, 286, 324, 362;
  64, 106, 148, 190, 232, 274, 316, 358, 400, 442;
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k + 2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Maple
    seq(seq( 2*(2*n*k+n+k+1), k=1..n), n=1..15) # G. C. Greubel, Mar 21 2021
  • Mathematica
    T[n_,k_]:=4*n*k + 2*n + 2*k + 2; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • Sage
    flatten([[2*(2*n*k+n+k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 21 2021

Formula

T(n, k) = 2*A144650(n, k).
Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n + 3) = n*A014105(n+2) =

Extensions

Edited by Robert Hochberg, Jun 21 2010

A135980 Numbers k such that the Mersenne number 2^prime(k)-1 is composite.

Original entry on oeis.org

5, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

A135979 is a subsequence of this sequence.

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], AppendTo[k, n]], {n, 1, 40}]; k
    m = PrimePi @ MersennePrimeExponent @ Range[13]; Complement[Range[m[[-1]]], m] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isok(k) = !isprime(2^prime(k)-1); \\ Michel Marcus, Mar 12 2020

Formula

prime(a(n)) = A054723(n).
a(n) = pi(A054723(n)).

Extensions

More terms from Amiram Eldar, Mar 12 2020

A221902 Primes of the form 2*n^2 + 10*n + 3.

Original entry on oeis.org

31, 103, 211, 751, 1291, 2371, 2803, 3271, 5503, 6151, 8311, 9103, 9931, 17851, 23971, 25303, 32503, 42331, 49603, 51511, 68071, 82003, 94603, 97231, 105331, 119551, 122503, 137803, 157351, 167611, 171103, 174631, 192811, 204151
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2013

Keywords

Comments

Conjecture: After the first term, 2^a(n)-1 is not prime; in other words, these primes (except 31) are included in A054723.
2*a(n) + 19 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723 (Prime exponents of nonprime Mersenne numbers).

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 10*n + 3];
  • Mathematica
    Select[Table[2 n^2 + 10 n + 3,{n, 500}],PrimeQ]

A330382 Composite numbers k such that k-1 divides 2^k-2.

Original entry on oeis.org

55, 295, 343, 1027, 1135, 1315, 1807, 2059, 2395, 3403, 4375, 5335, 6175, 6499, 7183, 7939, 9235, 10207, 12643, 13123, 14155, 16003, 16255, 19495, 21547, 23815, 27595, 27703, 30619, 35479, 37927, 43219, 45487, 48007, 48763, 50275, 55567, 58483, 64387, 64639, 74899
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Dec 12 2019

Keywords

Comments

If k is in this sequence, then 2^k-1 is also a term, so this sequence is infinite.
Also 2^p-1 is in this sequence for such prime p in A069051 that 2^p-1 is composite.
Theorem: if k-1 | 2^k-2, then m-1 | 2^m-2, where m = 2^k-1.
Conjecture: k-1 | 2^k-2 for k = (2^n-1)^3 if and only if n(n-1) | 2^n-2 for n > 2.
It seems that A007013(n)^3 for n > 1 and A007013(n) for n > 4 are in this sequence.
These are the composites k for which M - 1 divides 2^M - 2 where M = 2^k - 1. - Thomas Ordowski, Jul 01 2024

Crossrefs

A217468 is a subsequence.

Programs

  • Mathematica
    Select[Range[75000], CompositeQ[#] && Divisible[PowerMod[2, #, # - 1] - 2, # - 1] &]
  • PARI
    forcomposite(k=1,75000,if(!((2^k-2)%(k-1)),print1(k,", "))) \\ Hugo Pfoertner, Dec 12 2019

Formula

Composites of A014741(n) + 1. - Thomas Ordowski, Jul 01 2024

A045762 Numbers k such that 2^k - 1 is not a prime.

Original entry on oeis.org

0, 1, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Keywords

Examples

			8 belongs to the sequence because 2^8 - 1 = 255 is not a prime.
		

Crossrefs

Cf. A000043 (Mersenne prime exponents), A054723 (primes of this sequence).

Programs

  • Magma
    [n: n in [0..100]| not IsPrime(2^n-1)]; // Vincenzo Librandi, Jan 28 2011
  • Mathematica
    Select[Range[0,100],!PrimeQ[2^#-1]&]  (* Harvey P. Dale, Mar 22 2011 *)

Formula

Complement of A000043.

Extensions

More terms from Jennifer D. Secor (s1175994(AT)cedarville.edu)

A079324 k such that 2kp+1 is the first factor of a nonprime Mersenne number M(p) = 2^p - 1.

Original entry on oeis.org

1, 1, 4, 3, 163, 5, 25, 60, 1525, 1445580, 1609, 3, 17, 1, 59, 36793758459, 12379533, 3421967, 15, 1, 116905896337578232, 20236572837, 290792847537859675, 60, 2713800, 461, 7033, 2112, 1, 120, 1, 35807, 19, 413328944, 36, 41, 59441263078804, 3284, 3, 1, 45644
Offset: 1

Views

Author

Jon Perry, Feb 12 2003

Keywords

Comments

a(188) = 216 = k = (f-1)/2p for p=1231, f=531793. Although Mersenne numbers with p = 1213, 1217, 1229, 1231 are not fully factored, we know their smallest factors. One factor is known for p=1237 but it is not certain that it is the smallest. - Gord Palameta, Sep 26 2018

Examples

			2^11 - 1 = 23*89, 23 = 2*1*11 + 1, therefore a(1) = 1.
		

Crossrefs

Cf. A054723.

Programs

  • PARI
    forprime (n=3,101,v=2^n-1; if (!isprime(v),print1((factor(v)[,1][1]-1)\(2*n)",")))

Extensions

More terms from Michel Marcus, Mar 17 2014

A214873 Primes p such that 2*p + 1 is also prime and p + 1 is a highly composite number (definition 1).

Original entry on oeis.org

3, 5, 11, 23, 179, 239, 359, 719, 5039, 55439, 665279, 6486479, 32432399, 698377679, 735134399, 1102701599, 20951330399, 3212537327999, 149602080797769599, 299204161595539199, 2718551763981393634806325317503999
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 30 2012

Keywords

Comments

An equivalent definition of this sequence: odd Sophie Germain primes that differ from a highly composite number by 1.
Intersection of A005384 (Sophie Germain primes) and A072828.
With the exception of 5, a subsequence of A002515 (Lucasian primes).
Except for first two terms, this is a subsequence of A054723.
Except for n = 2, 2*a(n) + 1 is a prime factor of A000225(a(n)) (i.e., 2*23 + 1 divides 2^23 - 1).
Conjecture: for n >= 5, GCD(A000032(a(n)), A000225(a(n))) = 2*a(n) + 1.

Examples

			23 is a term because both 23 and 47 are primes and also 24 is a highly composite number.
		

Crossrefs

Cf. A054723.

Programs

  • Mathematica
    lst = {}; a = 0; Do[b = DivisorSigma[0, n + 1]; If[b > a, a = b; If[PrimeQ[n] && PrimeQ[2*n + 1], AppendTo[lst, n]]], {n, 1, 10^6, 2}]; lst

A221903 Primes of the form 2*n^2 + 42*n + 19.

Original entry on oeis.org

163, 811, 1423, 1783, 2179, 3079, 3583, 9739, 11503, 13411, 14419, 17659, 22483, 25111, 26479, 27883, 42139, 49411, 55243, 57259, 70111, 72379, 77023, 79399, 86743, 97039, 116443, 119359, 125299, 140779, 181603, 188911, 207811
Offset: 1

Views

Author

Vincenzo Librandi, Feb 01 2013

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 403 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), this sequence (k=9), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 42*n + 19];
  • Mathematica
    Select[Table[2 n^2 + 42 n + 19, {n, 500}], PrimeQ]

A243889 Primes of the form 2*n^2+30*n+13.

Original entry on oeis.org

661, 1201, 2281, 2713, 3181, 4801, 5413, 8221, 9013, 12541, 13513, 17761, 18913, 20101, 32413, 33961, 38821, 51421, 72481, 91921, 94513, 108013, 110821, 134581, 137713, 153913, 167521, 211801, 223681, 265621, 274441, 335281, 345181, 365413, 370561, 440761, 560641
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A142104.
Conjecture: except 2281, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 199 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. A142104.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..800] | IsPrime(a) where a is 2*n^2+30*n+13];
  • Mathematica
    Select[Table[2 n^2 + 30 n + 13, {n, 1000}], PrimeQ]
Previous Showing 21-30 of 41 results. Next