A054893 a(n) = Sum_{j > 0} floor(n/4^j).
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 0
Examples
a(10^0) = 0. a(10^1) = 2. a(10^2) = 32. a(10^3) = 330. a(10^4) = 3331. a(10^5) = 33330. a(10^6) = 333330. a(10^7) = 3333329. a(10^8) = 33333328. a(10^9) = 333333326.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
function A054893(n) if n eq 0 then return n; else return A054893(Floor(n/4)) + Floor(n/4); end if; return A054893; end function; [A054893(n): n in [0..103]]; // G. C. Greubel, Feb 09 2023
-
Mathematica
Table[t=0; p=4; While[s=Floor[n/p]; t=t+s; s>0, p *= 4]; t, {n,0,100}] Table[Total[Floor/@(n/NestList[4#&,4,6])],{n,0,80}] (* Harvey P. Dale, Jun 12 2022 *)
-
PARI
a(n) = (n - sumdigits(n,4))/3; \\ Kevin Ryde, Jan 08 2024
-
SageMath
def A054893(n): if (n==0): return 0 else: return A054893(n//4) + (n//4) [A054893(n) for n in range(104)] # G. C. Greubel, Feb 09 2023
Formula
a(n) = floor(n/4) + floor(n/16) + floor(n/64) + floor(n/256) + ...
a(n) = (n - A053737(n))/3.
From Hieronymus Fischer, Sep 15 2007: (Start)
a(n) = a(floor(n/4)) + floor(n/4).
a(4*n) = a(n) + n.
a(n*4^m) = a(n) + n*(4^m-1)/3.
a(k*4^m) = k*(4^m-1)/3, for 0 <= k < 4, m >= 0.
Asymptotic behavior:
a(n) = n/3 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/3; equality holds true for powers of 4.
a(n) >= (n-3)/3 - floor(log_4(n)); equality holds true for n = 4^m - 1, m>0. lim inf (n/3 - a(n)) = 1/3, for n-->oo.
lim sup (n/3 - log_4(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_4(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(4^k)/(1-x^(4^k)). (End)
Partial sums of A235127. - R. J. Mathar, Jul 08 2021
Extensions
Edited by Hieronymus Fischer, Sep 15 2007
Examples added by Hieronymus Fischer, Jun 06 2012
Comments