cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A054893 a(n) = Sum_{j > 0} floor(n/4^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 0

Views

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from highest power of 4 dividing n! (see A090616).

Examples

			  a(10^0) = 0.
  a(10^1) = 2.
  a(10^2) = 32.
  a(10^3) = 330.
  a(10^4) = 3331.
  a(10^5) = 33330.
  a(10^6) = 333330.
  a(10^7) = 3333329.
  a(10^8) = 33333328.
  a(10^9) = 333333326.
		

Crossrefs

Cf. A053737, A235127 (first differences).

Programs

  • Magma
    function A054893(n)
      if n eq 0 then return n;
      else return A054893(Floor(n/4)) + Floor(n/4);
      end if; return A054893;
    end function;
    [A054893(n): n in [0..103]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    Table[t=0; p=4; While[s=Floor[n/p]; t=t+s; s>0, p *= 4]; t, {n,0,100}]
    Table[Total[Floor/@(n/NestList[4#&,4,6])],{n,0,80}] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    a(n) = (n - sumdigits(n,4))/3; \\ Kevin Ryde, Jan 08 2024
  • SageMath
    def A054893(n):
        if (n==0): return 0
        else: return A054893(n//4) + (n//4)
    [A054893(n) for n in range(104)] # G. C. Greubel, Feb 09 2023
    

Formula

a(n) = floor(n/4) + floor(n/16) + floor(n/64) + floor(n/256) + ...
a(n) = (n - A053737(n))/3.
From Hieronymus Fischer, Sep 15 2007: (Start)
a(n) = a(floor(n/4)) + floor(n/4).
a(4*n) = a(n) + n.
a(n*4^m) = a(n) + n*(4^m-1)/3.
a(k*4^m) = k*(4^m-1)/3, for 0 <= k < 4, m >= 0.
Asymptotic behavior:
a(n) = n/3 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/3; equality holds true for powers of 4.
a(n) >= (n-3)/3 - floor(log_4(n)); equality holds true for n = 4^m - 1, m>0. lim inf (n/3 - a(n)) = 1/3, for n-->oo.
lim sup (n/3 - log_4(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_4(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(4^k)/(1-x^(4^k)). (End)
Partial sums of A235127. - R. J. Mathar, Jul 08 2021

Extensions

Edited by Hieronymus Fischer, Sep 15 2007
Examples added by Hieronymus Fischer, Jun 06 2012

A085604 T(n,k) = highest power of prime(k) dividing n!, read by rows.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2003

Keywords

Comments

T(n,1) = A011371(n); T(n,2) = A054861(n) for n>1;
T(n,k) = number of occurrences of prime(k) as factor in numbers <= n (with repetitions);
Sum{T(n,k): 1<=k<=n} = A022559(n);
T(n, A000720(n)) = 1; T(n,k) = 0, A000720(n)
T(n,k) = A115627(n,k) for n > 1 and k=1..A000720(n). - Reinhard Zumkeller, Nov 01 2013

Examples

			0;
1,0;
1,1,0;
3,1,0,0;
3,1,1,0,0;
4,2,1,0,0,0;
4,2,1,1,0,0,0;
7,2,1,1,0,0,0,0;
7,4,1,1,0,0,0,0,0;
8,4,2,1,0,0,0,0,0,0;
		

Crossrefs

Programs

  • Haskell
    a085604 n k = a085604_tabl !! (n-2) !! (k-1)
    a085604_row 1 = [0]
    a085604_row n = a115627_row n ++ (take $ a062298 $ fromIntegral n) [0,0..]
    a085604_tabl = map a085604_row [1..]
    -- Reinhard Zumkeller, Nov 01 2013
  • Mathematica
    T[n_, k_] := Module[{p = Prime[k], jm}, jm = Floor[Log[p, n]]; Sum[Quotient[n, p^j], {j, 1, jm}]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

A090617 Exponent of highest power of 8 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 0

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			a(8)=2 since 8! = 40320 = 8^2 * 630.
		

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[n!,8],{n,0,80}] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    a(n) = valuation(n!, 8); \\ Michel Marcus, Jul 10 2022

Formula

a(n) = A090622(n, 8) = floor(A011371(n)/3) = floor((floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ...)/3).
a(n) = A244413(n!) . - R. J. Mathar, Jul 08 2021

A064458 Highest power of 11 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9
Offset: 0

Author

Robert G. Wilson v, Oct 03 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[t = 0; p = 11; While[s = Floor[n/p]; t = t + s; s > 0, p *= 11]; t, {n, 0, 100} ]
    IntegerExponent[Range[0,110]!,11] (* Harvey P. Dale, Aug 07 2017 *)
  • PARI
    { for (n=0, 1000, a=0; p=11; while (s = n\p, a+=s; p*=11); write("b064458.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 14 2009
    
  • PARI
    a(n) = valuation(n!, 11); \\ Michel Marcus, Apr 07 2016

Formula

a(n) = floor[n/11] + floor[n/121] + floor[n/1331] + floor[n/14641] + ....
a(n) = (n-A053831(n))/10. [R. J. Mathar, Oct 17 2010]

A065039 If n in base 10 is d_1 d_2 ... d_k then a(n) = d_1 + d_1d_2 + d_1d_2d_3 + ... + d_1...d_k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70
Offset: 0

Author

Santi Spadaro, Nov 04 2001

Keywords

Comments

a(n) = (D(n) - sod(n))/9, for n >= 1, with sod(n) the sum of digits of n, and with D(n) any of the 10 numbers given in base 10 representation by d_(nod(n)-1) d_(nod(n)-2) ... d_0 b_0, where nod(n) is the number of digits of n = d_(nod(n)-1) d_(nod(n)-2) ... d_0 in base 10, and b_0 from {0, 1, ..., 9}. E.g., D(1234) stands for any number from {12340, 12341, ..., 12349}. This corresponds the well known (and easy to prove) rule that any number after subtraction of its sum of digits is divisible by 9. In this subtraction any of the last digit b_0 leads to the same result. Some mathematical tricks are based on this rule. See the Gardner reference. - Wolfdieter Lang, May 04 2010

Examples

			a(1234)=1370 because 1+12+123+1234=1370.
With repunits: a(1234) = 4*1 + 3*11 + 2*111 + 1*1111 = 1370. - _Wolfdieter Lang_, May 04 2010
		

References

  • M. Gardner, Mathematische Zaubereien, Dumont, 2004, p. 39. German translation of: Mathematics, Magic and Mystery, Dover, 1956. [From Wolfdieter Lang, May 04 2010]

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a065039 n = sum $ map read $ tail $ inits $ show n
    -- Reinhard Zumkeller, Mar 31 2011
  • Maple
    A065039 := proc(n) local d,m: d:=convert(n,base,10): m:=nops(d): return add(op(convert(d[(m-k+1)..m], base, 10, 10^m)),k=1..m): end: seq(A065039(n),n=0..64); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    a[n_] := Apply[Plus, Table[FromDigits[Take[IntegerDigits[n], k]], {k, 1, Length[IntegerDigits[n]]}]]
    Table[d = IntegerDigits[n]; rd = 0; While[ Length[d] > 0, rd = rd + FromDigits[d]; d = Drop[d, -1]]; rd, {n, 0, 75} ]
    f[n_] := Plus @@ NestList[ Quotient[ #, 10] &, n, Max[1, Floor@ Log[10, n]]]; Array[f, 70, 0] (* Robert G. Wilson v, Jun 29 2010 *)
    Array[Total[Table[FromDigits[Take[IntegerDigits[#],x]],{x, IntegerLength[ #]}]]&,100,0](* Harvey P. Dale, Jan 02 2016 *)
  • PARI
    { for (n=0, 1000, a=0; k=n; until (k==0, a+=k; k\=10); write("b065039.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 04 2009
    

Formula

a(n) = sum( k>=0, floor(n/10^ k)) = n+A054899(n). - Benoit Cloitre, Aug 03 2002
From Hieronymus Fischer, Aug 14 2007: (Start)
a(10*n)=10*n+a(n); a(n*10^m)=10*n*(10^m-1)/9+a(n).
a(k*10^m)=k*(10^(m+1)-1)/2, 0<=k<10, m>=0.
a(n)=10/9*n+O(log(n)), a(n+1)-a(n)=O(log(n)); this follows from the inequalities below.
a(n)<=(10*n-1)/9; equality holds for powers of 10.
a(n)>=(10*n-9)/9-floor(log_10(n)); equality holds for n=10^m-1, m>0.
lim inf (10*n/9-a(n))=1/9, for n-->oo.
lim sup (10*n/9-log_10(n)-a(n))=0, for n-->oo.
lim sup (a(n+1)-a(n)-log_10(n))=1, for n-->oo.
G.f.: sum{k>=0, x^(10^k)/(1-x^(10^k))}/(1-x).
(End)
a(n) = sum(d_(k)*RU(k+1),k=0..nod(n)-1), with the notation nod(n)and d_k given in a comment above, and RU(k)is the repunit (10^k-1)/9 (k times 1). - Wolfdieter Lang, May 04 2010

A090620 Highest power of 13 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8
Offset: 0

Author

Henry Bottomley, Dec 06 2003

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          a(n-1)+padic[ordp](n, 13))
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Jun 20 2020
  • Mathematica
    IntegerExponent[Range[0,110]!,13] (* Harvey P. Dale, Aug 22 2011 *)
    FoldList[Plus, 0, IntegerExponent[Range[100], 13]] (* T. D. Noe, Apr 10 2012 *)
  • PARI
    a(n)=my(t);while(n,t+=n\=13);t \\ Charles R Greathouse IV, Aug 06 2012

Formula

a(n) = A090622(n, 13) = A090623(n, 13) = [n/13]+[n/169]+[n/2197]+...
a(n) = n/12 + O(log n). - Charles R Greathouse IV, Aug 06 2012

A090623 Triangle of T(n,k) = [n/k] + [n/k^2] + [n/k^3] + [n/k^4] + ... for n, k > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 7, 2, 2, 1, 1, 1, 1, 7, 4, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 6, 3, 3, 2, 2, 1, 1, 1
Offset: 2

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Rows start:
  1;
  1,1;
  3,1,1;
  3,1,1,1;
  4,2,1,1,1;
  4,2,1,1,1,1;
  7,2,2,1,1,1,1;
  7,4,2,1,1,1,1,1;
  8,4,2,2,1,1,1,1,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    A090623[n_, k_] := Quotient[n - DigitSum[n, k], k - 1];
    Table[A090623[n, k], {n, 2, 15}, {k, 2, n}] (* Paolo Xausa, Sep 02 2025 *)
  • PARI
    T(n,k) = {my(s = 0, j = 1); while(p=n\k^j, s += p; j++); s;} \\ Michel Marcus, Feb 02 2016
    
  • PARI
    T(n,k) = (n - sumdigits(n,k))/(k-1) \\ Zhuorui He, Aug 25 2025

Formula

For p prime, T(n, p) = A090622(n, p) is the number of times that p is a factor of n!.
T(n,k) = (n - A240236(n, k))/(k - 1). - Zhuorui He, Aug 25 2025

Extensions

a(41) onward corrected by Zhuorui He, Aug 25 2025

A261231 a(n) = number of steps to reach 0 when starting from k = n and repeatedly applying the map that replaces k with k - (sum of digits in base-3 representation of k).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24
Offset: 0

Author

Antti Karttunen, Aug 12 2015

Keywords

Crossrefs

Programs

  • Python
    from sympy.ntheory.factor_ import digits
    def a054861(n): return (n - sum(digits(n, 3)[1:]))/2
    def a(n): return 0 if n==0 else 1 + a(2*a054861(n)) # Indranil Ghosh, May 22 2017

Formula

a(0) = 0; for n >= 1, a(n) = 1 + a(2*A054861(n)). [Note that A054861(n) = (n - A053735(n))/2, where A053735(n) = sum of digits of n, when written in base 3.]

A054897 a(n) = Sum_{k>0} floor(n/8^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12
Offset: 0

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from the highest power of 8 dividing n!, A090617.

Examples

			a(100) = 13.
a(10^3) = 141.
a(10^4) = 1427.
a(10^5) = 14284.
a(10^6) = 142855.
a(10^7) = 1428569.
a(10^8) = 14285710.
a(10^9) = 142857138.
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

  • Magma
    m:=8;
    function a(n) // a = A054897
      if n eq 0 then return n;
      else return a(Floor(n/m)) + Floor(n/m);
      end if;
    end function;
    [a(n): n in [0..103]]; // G. C. Greubel, Apr 28 2023
    
  • Mathematica
    Table[t=0; p=8; While[s=Floor[n/p]; t=t+s; s>0, p *= 8]; t, {n,0,100}]
  • Python
    def A054897(n): return (n-sum(int(d) for d in oct(n)[2:]))//7 # Chai Wah Wu, Jul 09 2022
    
  • SageMath
    m=8 # a = A054897
    def a(n): return 0 if (n==0) else a(n//m) + (n//m)
    [a(n) for n in range(104)] # G. C. Greubel, Apr 28 2023

Formula

a(n) = floor(n/8) + floor(n/64) + floor(n/512) + floor(n/4096) + ....
a(n) = (n - A053829(n))/7.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/8) + a(floor(n/8));
a(8*n) = n + a(n);
a(n*8^m) = n*(8^m-1)/7 + a(n).
a(k*8^m) = k*(8^m-1)/7, for 0 <= k < 8, m >= 0.
Asymptotic behavior:
a(n) = n/7 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/7; equality holds for powers of 8.
a(n) >= (n-7)/7 - floor(log_8(n)); equality holds for n=8^m-1, m>0.
lim inf (n/7 - a(n)) = 1/7, for n -> oo.
lim sup (n/7 - log_8(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_8(n)) = 0, for n -> oo.
G.f.: g(x) = ( Sum_{k>0} x^(8^k)/(1-x^(8^k)) )/(1-x). (End)
Partial sums of A244413. - R. J. Mathar, Jul 08 2021

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A054898 a(n) = Sum_{k>0} floor(n/9^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from the highest power of 9 dividing n!, A090618.

Examples

			a(100)=12.
a(10^3)=124.
a(10^4)=1248.
a(10^5)=12498.
a(10^6)=124996.
a(10^7)=1249997.
a(10^8)=12499996.
a(10^9)=124999997.
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

  • Mathematica
    Table[t = 0; p = 9; While[s = Floor[n/p]; t = t + s; s > 0, p *= 9]; t, {n, 0, 100} ]
    Table[Sum[Floor[n/9^k],{k,n}],{n,0,100}] (* Harvey P. Dale, Jul 10 2024 *)

Formula

a(n) = floor(n/9) + floor(n/81) + floor(n/729) + floor(n/6561) + ....
a(n) = (n-A053830(n))/8.
From Hieronymus Fischer, Aug 14 2007: (Start)
Recurrence:
a(n) = floor(n/9) + a(floor(n/9));
a(9*n) = n + a(n);
a(n*9^m) = n*(9^m-1)/8 + a(n).
a(k*9^m) = k*(9^m-1)/8, for 0<=k<9, m>=0.
Asymptotic behavior:
a(n) = n/8 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/8; equality holds for powers of 9.
a(n) >= (n-8)/8 - floor(log_9(n)); equality holds for n=9^m-1, m>0.
lim inf (n/8 - a(n)) =1/8, for n-->oo.
lim sup (n/8 - log_9(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_9(n)) = 0, for n-->oo.
G.f.: g(x) = sum{k>0, x^(9^k)/(1-x^(9^k))}/(1-x). (End)

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012
Previous Showing 21-30 of 53 results. Next