cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 506 results. Next

A061384 Numbers n such that sum of digits = number of digits.

Original entry on oeis.org

1, 11, 20, 102, 111, 120, 201, 210, 300, 1003, 1012, 1021, 1030, 1102, 1111, 1120, 1201, 1210, 1300, 2002, 2011, 2020, 2101, 2110, 2200, 3001, 3010, 3100, 4000, 10004, 10013, 10022, 10031, 10040, 10103, 10112, 10121, 10130, 10202, 10211
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

Number of d-digit entries is A071976(d). - Robert Israel, Apr 06 2016
Equivalently, numbers n > 0 for which the arithmetic mean of the digits equals 1. - M. F. Hasler, Dec 07 2018

Examples

			120 is a term as the arithmetic mean of the digits is (1+2+0)/3 = 1.
		

Crossrefs

Totally balanced subset: A071154. Cf. also A061383-A061388, A061423-A061425.
Cf. A071976.
Cf. A007953 (sum of digits), A055642 (number of digits).

Programs

  • Magma
    [ n: n in [1..10215] | &+Intseq(n) eq #Intseq(n) ]; // Bruno Berselli, Jun 30 2011
    
  • Maple
    Q:= proc(n,s) option remember;
    # n-digit integers with digit sum s
    if s = 0 then []
    elif s = 1 then [10^(n-1)]
    elif n = 1 then
       if s <= 9 then [s]
       else []
       fi
    else
      map(op,[seq(map(t -> 10*t+i, procname(n-1,s-i)), i=0..min(9,s-1))])
    fi
    end proc:
    map(op, [seq(sort(Q(n,n)),n=1..5)]); # Robert Israel, Apr 06 2016
  • Mathematica
    Select[Range[15000], Total[IntegerDigits[#]] == IntegerLength[#]&] (* Harvey P. Dale, Jan 08 2011 *)
  • PARI
    isok(n) = (sumdigits(n)/#Str(n) == 1); \\ Michel Marcus, Mar 28 2016
    
  • PARI
    is_A061384(n)={sumdigits(n)==logint(n+!n,10)+1} \\ M. F. Hasler, Dec 07 2018
    
  • PARI
    A061384_row(n)={my(L=List(), u=vector(n, i, i==1), d); forvec(v=vector(n+1, i, [if(i>n,n, 1), if(i>1, n, 1)]), vecmax(d=v[^1]-v[^-1]+u)<10 && listput(L,fromdigits(d)),1);Vec(L)} \\ Return the list of all n-digit terms. - M. F. Hasler, Dec 07 2018
    
  • Python
    from itertools import count, islice
    def Q(n, s): # length-n strings of 0..9 with sum s, after Robert Israel
        if s == 0: yield "0"*n
        elif n == 1: yield (str(s) if s <= 9 else "")
        else:
            m = min(9, s) + 1
            yield from (str(i)+t for i in range(m) for t in Q(n-1, s-i))
    def agen():
        yield from (int(t) for n in count(1) for t in Q(n, n) if t[0] != "0")
    print(list(islice(agen(), 43))) # Michael S. Branicky, May 26 2022
    
  • Python
    from itertools import count, islice
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    def A061384_gen(): # generator of terms
        for l in count(1):
            for i in range(1,min(l,9)+1):
                yield from sorted(int(str(i)+''.join(map(str,j))) for s,p in partitions(l-i,k=9,size=True) for j in multiset_permutations([0]*(l-1-s)+list(Counter(p).elements())))
    A061384_list = list(islice(A061384_gen(),30)) # Chai Wah Wu, Nov 28 2023

Formula

{n > 0 | A007953(n) = A055642(n)}. - M. F. Hasler, Dec 07 2018

Extensions

More terms from Erich Friedman, May 08 2001

A073053 Apply DENEAT operator (or the Sisyphus function) to n.

Original entry on oeis.org

101, 11, 101, 11, 101, 11, 101, 11, 101, 11, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

DENEAT(n): concatenate number of even digits in n, number of odd digits and total number of digits. E.g., 25 -> 1.1.2 = 112 (Digits: Even, Not Even, And Total). Leading zeros are then omitted.
This is also known as the Sisyphus function. - N. J. A. Sloane, Jun 25 2018
Repeated application of the DENEAT operator reduces all numbers to 123. This is easy to prove. Compare A073054, A100961. - N. J. A. Sloane Jun 18 2005

Examples

			a(1) = 0.1.1 -> 11.
a(10000000000) = 10111 because 10000000000 has 10 even digits, 1 odd digit and 11 total digits
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (Jan 01 1999), p. 2.
  • J. Schram, The Sisyphus string, J. Rec. Math., 19:1 (1987), 43-44.
  • M. Zeger, Fatal attraction, Mathematics and Computer Education, 27:2 (1993), 118-123.

Crossrefs

Programs

  • Maple
    read("transforms") :
    A073053 := proc(n)
        local e,o,L ;
        if n = 0 then
            0 ;
        else
            e := A196563(n) ;
            o := A196564(n) ;
            L := [e,o,e+o] ;
            digcatL(L) ;
        end if;
    end proc: # R. J. Mathar, Jul 13 2012
    # Maple code based on R. J. Mathar's code for A171797, added by N. J. A. Sloane, May 12 2019 (Start)
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1, n2, n1-n2]) ; end proc:
    A073053 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1-n2, n1]) ; end proc:
    seq(A073053(n), n=1..80) ; (End)
    L:=proc(n) if n=0 then 1 else floor(evalf(log(n)/log(10)))+1; fi; end;
    S:=proc(n) local Le,Ld,Lt,t1,e,d,t; global L;
    t1:=convert(n,base,10); e:=0; d:=0; t:=nops(t1);
    for i from 1 to t do if (t1[i] mod 2) = 0 then e:=e+1; else d:=d+1; fi; od:
    Le:=L(e); Ld:=L(d); Lt:=L(t);
    if e=0 then 10^Lt*d+t
    elif d=0 then 10^(Ld+Lt)*e+10^Lt*d+t
    else 10^(Ld+Lt)*e+10^Lt*d+t; fi;
    end;
    [seq(S(n),n=1..200)]; # N. J. A. Sloane, Jun 25 2018
    # alternative Maple program:
    a:= n-> (l-> (e-> parse(cat(e, (h-> [h-e, h][])(nops(l))))
        )(nops(select(x-> x::even, l))))(convert(n, base, 10)):
    seq(a(n), n=0..200);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ f[n], {n, 0, 55}] (* Robert G. Wilson v, Jun 09 2005 *)
    s={};Do[id=IntegerDigits[n];ev=Select[id, EvenQ];ne=Select[id, OddQ];fd=FromDigits[{Length[ev], Length[ne], Length[id]}]; s=Append[s, fd], {n, 81}];SameQ[newA073053-s] (* Zak Seidov *)
    deneat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Flatten[ IntegerDigits/@ {Count[ idn,?EvenQ],Count[ idn,?OddQ],Length[ idn]}]]] Array[ deneat,60,0]// Flatten (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)-e) + str(len(s)))
    print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 21 2022

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
a(0) added by N. J. A. Sloane, May 12 2019

A001633 Numbers with an odd number of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145
Offset: 1

Views

Author

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/11 and 10/11, respectively. - Amiram Eldar, Feb 01 2021

Crossrefs

Cf. A001637 (complement), A055642.

Programs

Formula

A055642(a(n)) mod 2 = 1. - Reinhard Zumkeller, Jul 14 2014
Except for k = 0, if k is in this sequence, floor(log_10 k) is even; e.g., if k has three digits, 2 <= log_10 k < 3. - Alonso del Arte, Feb 03 2020

A056524 Palindromes with even number of digits.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 3003, 3113, 3223, 3333, 3443, 3553, 3663, 3773, 3883, 3993, 4004, 4114, 4224, 4334, 4444, 4554
Offset: 1

Views

Author

Henry Bottomley, Jun 16 2000

Keywords

Comments

Concatenation of n with reverse of n (keeping leading zeros in the reverse).
A178788(a(n)) = 0 for n > 1. - Reinhard Zumkeller, Jun 30 2010
All of the terms are divisible by eleven. - James Burling, Aug 08 2014

Crossrefs

Cf. A110745 (permutation).

Programs

  • Haskell
    a056524 n = a056524_list !! (n-1)
    a056524_list = [read (ns ++ reverse ns) :: Integer |
                    n <- [0..], let ns = show n]
    -- Reinhard Zumkeller, Dec 28 2011
    
  • Mathematica
    d[n_]:=IntegerDigits[n]; Table[FromDigits[Join[x=d[n],Reverse[x]]],{n,45}] (* Jayanta Basu, May 29 2013 *)
    Select[Flatten[Table[Range[10^n,10^(n+1)-1],{n,1,3,2}]],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 22 2018 *)
  • Python
    def a(n): s = str(n); return int(s + s[::-1])
    print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Nov 02 2021

Formula

a(n) = n*10^A055642(n) + A004086(n).
a(n) = 11 * A066492(n).

A168327 Primes of concatenated form "1 n^3".

Original entry on oeis.org

11, 127, 12197, 135937, 159319, 11092727, 11295029, 11860867, 12685619, 14330747, 14826809, 15000211, 15929741, 16128487, 18869743, 19393931, 124137569, 126198073, 127818127, 129503629, 138958219, 150243409, 154439939, 160698457, 175686967, 191733851, 195443993
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 23 2009

Keywords

Comments

(1) It is conjectured that sequence is infinite.
(2) These are primes all with "leading" digit "1", they are concatenations of two cubic numbers: 1^3 and n^3, n is a natural.

Examples

			(1) 10^1+1^3=11 = prime(5) = a(1).
(2) 10^2+3^3=127 = prime(31) = a(2).
(3) 10^4+13^3=12197 = prime(1458) = a(3).
		

References

  • Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996

Crossrefs

Programs

  • Mathematica
    Select[FromDigits[Join[{1},IntegerDigits[#]]]&/@(Range[500]^3),PrimeQ] (* Harvey P. Dale, May 16 2012 *)

Formula

If n^3 is a d-digit number and d no multiple of 3, then p=10^d+n^3, where n is odd and no multiple of 5.
a(n) = c+10^A055642(c) where c=A167725(n). - R. J. Mathar, Nov 23 2009

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A193238 Number of prime digits in decimal representation of n.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 19 2011

Keywords

Crossrefs

Programs

Formula

a(A084984(n))=0; a(A118950(n))>0; a(A092620(n))=1; a(A092624(n))=2; a(A092625(n))=3; a(A046034(n))=A055642(A046034(n));
a(A000040(n)) = A109066(n).
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = sum_{j=1..m+1} (floor(n/10^j+0.3) + floor(n/10^j+0.5) + floor(n/10^j+0.8) - floor(n/10^j+0.2) - floor(n/10^j+0.4) - floor(n/10^j+0.6)), where m=floor(log_10(n)), n>0.
a(10n+k) = a(n) + a(k), 0<=k<10, n>=0.
a(n) = a(floor(n/10)) + a(n mod 10), n>=0.
a(n) = sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A046034(n)) = floor(log_4(3n+1)), n>0.
a(A211681(n)) = 1 + floor((n-1)/4), n>0.
G.f.: g(x) = (1/(1-x))*sum_{j>=0} (x^(2*10^j) + x^(3*10^j)+ x^(5*10^j) + x^(7*10^j))*(1-x^10^j)/(1-x^10^(j+1)).
Also: g(x) = (1/(1-x))*sum_{j>=0} (x^(2*10^j)- x^(4*10^j)+ x^(5*10^j)- x^(6*10^j)+ x^(7*10^j)- x^(8*10^j))/(1-x^10^(j+1)). (End)

A213302 Smallest number with n nonprime substrings (Version 1: substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

2, 1, 11, 10, 103, 101, 100, 1017, 1011, 1002, 1000, 10037, 10023, 10007, 10002, 10000, 100137, 100073, 100023, 100003, 100002, 100000, 1000313, 1000037, 1000033, 1000023, 1000003, 1000002, 1000000, 10000337, 10000223, 10000137, 10000037, 10000023, 10000013, 10000002, 10000000, 100001733
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is not empty. Proof: Define m(n)=2*sum_{j=i..k} 10^j, where k=floor((sqrt(8*n+1)-1)/2), i:= n-A000217(k). For n=0,1,2,3,… the m(n) are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, ... . m(n) has k+1 digits and (k-i+1) 2’s, thus, the number of nonprime substrings of m(n) is ((k+1)*(k+2)/2)-k-1+i=(k*(k+1)/2)+i=n, which proves the statement.
The 3 versions according to A213302 - A213304 are quite different. Example: 1002 has 9 nonprime substrings in version 1 (0, 0, 00, 02, 002, 1, 10 100, 1002), in version 2 there are 6 nonprime substrings (02, 002, 1, 10, 100, 1002) and there are 4 nonprime substrings in version 3 (1, 10, 100, 1002).

Examples

			a(0)=2, since 2 is the least number with zero nonprime substrings.
a(1)=1, since 1 has 1 nonprime substrings.
a(2)=11, since 11 is the least number with 2 nonprime substrings.
a(3)=10, since 10 is the least number with 3 nonprime substrings, these are 1, 0 and 10 (‘0’ will be counted).
		

Crossrefs

Formula

a(n) >= 10^floor((sqrt(8*n-7)-1)/2) for n>0, equality holds if n is a triangular number > 0 (cf. A000217).
a(A000217(n)) = 10^(n-1), n>0.
a(A000217(n)-k) >= 10^(n-1)+k, n>0, 0<=k
a(A000217(n)-1) = 10^(n-1)+2, n>3, provided 10^(n-1)+1 is not a prime (which is proved to be true for all n-1 <= 50000 (cf. A185121) except n-1=16384 and is generally true for n-1 unequal to a power of 2).
a(A000217(n)-k) = 10^(n-1)+p, where p is the minimal number such that 10^(n-1) + p, has k prime substrings, n>0, 0<=k
Min(a(A000217(n)-k-i), 0<=i<=m) <= 10^(n-1)+p, where p is the minimal number with k prime substrings and m is the number of digits of p, and k+m
Min(a(A000217(n)-k-i), 0<=i<=A055642(A035244(k)) <= 10^(n-1)+A035244(k).
a(A000217(n)-k) <= 10^(n-1)+max(p(i), k<=i<=k+m), where p(i) is the minimal number with i prime substrings and m is the number of digits of p(i), and k+m
a(A000217(n)-k) <= 10^(n-1)+max(A035244(i), k<=i<=k+ A055642(i).
a(n) <= A213305(n).

A246435 Length of representation of n in fractional base 3/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9
Offset: 0

Author

Reinhard Zumkeller, Sep 05 2014

Keywords

Crossrefs

Cf. A024629, A055642, A070989, A081604, A081848 (run lengths), A244040.

Programs

  • Haskell
    a246435 n = if n < 3 then 1 else a246435 (2 * div n 3) + 1
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Mathematica
    a[n_] := If[n < 3, 1, a[2 Quotient[n, 3]] + 1]; Array[a, 100, 0] (* Jean-François Alcover, Feb 05 2019 *)
  • PARI
    a(n) = if(n < 3, 1, a(n\3 * 2) + 1); \\ Amiram Eldar, Jul 30 2025

Formula

a(n) = if n < 3 then 1, otherwise a(2*floor(n/3)) + 1.
a(n) = A055642(A024629(n)).

A004426 Arithmetic mean of digits of n (rounded down).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 0, 0, 1, 1, 1, 2, 2, 2
Offset: 0

Keywords

Comments

From Reinhard Zumkeller, May 27 2010: (Start)
A004427(n) <= a(n);
a(A061383(n)) = A004427(A061383(n));
a(A000040(n)) = A074461(n). (End)

Crossrefs

Cf. A175688.

Programs

Formula

a(n) = floor(A007953(n)/A055642(n)). - Reinhard Zumkeller, May 27 2010

A107740 Number of numbers m such that prime(n) = m + (digit sum of m).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1
Offset: 1

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

a(A049084(A006378(n))) = 0; a(A049084(A048521(n))) > 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]
a(n) <= 2 for n <= 10^5. Conjecture: sequence is bounded.
I would rather conjecture the opposite. Of course a(n) >= m implies n >= A006064(m), having more than A230857(m) digits, i.e., 14, 25 and 1111111111125 digits of n, for a(n) = 3, 4, 5. - M. F. Hasler, Nov 09 2018

Examples

			A000040(26) = 101 = 91 + (9 + 1) = 100 + (1 + 0 + 0): a(26) = # {91, 100} = 2.
		

Programs

  • Haskell
    a107740 n = length [() | let p = a000040 n,
                             m <- [max 0 (p - 9 * a055642 p) .. p - 1],
                             a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    Table[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
  • PARI
    apply( A107740(n)=A230093(prime(n)), [1..150]) \\ M. F. Hasler, Nov 08 2018

Formula

a(n) = A230093(prime(n)), i.e.: A107740 = A230093 o A000040. - M. F. Hasler, Nov 08 2018
Previous Showing 71-80 of 506 results. Next