cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 506 results. Next

A270083 Near-miss circular primes: Primes p where all but one of the numbers obtained by cyclically permuting the digits of p are prime.

Original entry on oeis.org

19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 101, 103, 107, 127, 149, 157, 163, 173, 181, 191, 271, 277, 307, 313, 317, 331, 359, 367, 379, 397, 419, 479, 491, 571, 577, 593, 617, 631, 673, 701, 709, 727, 739, 757, 761, 787, 797, 811, 839, 877, 907, 911
Offset: 1

Views

Author

Felix Fröhlich, Mar 10 2016

Keywords

Comments

Prime p is a term of the sequence iff A262988(p) = A055642(p) - 1.
If a(512) exists, it is larger than 10^16. - Giovanni Resta, Apr 27 2017
If one of the digits is even or 5, the miss occurs when that digit is permuted to the ones place. Avoiding that simple obstruction, this sequence intersected with A091633 is 19, 173, 191, 313, 317, 331, 379, 397, 739, 797, 911, 937, 977, 1319, 1777, 1913, 1979, 1993, 3191, 3373, 3719, 3733, 3793, ... . Is this an infinite subsequence? - Danny Rorabaugh, May 15 2017

Crossrefs

Programs

A293663 Circular primes that are not repunits.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939
Offset: 1

Views

Author

Felix Fröhlich, Dec 30 2017

Keywords

Comments

Relative complement of A004022 in A068652.
Conjecture: The sequence is finite.
From Michael De Vlieger, Dec 30 2017: (Start)
Primes > 5 in this sequence must only have digits that are in the reduced residue system modulo 10, i.e., {1, 3, 7, 9}.
There are 54 terms that have 6 or fewer decimal digits, the largest of which is 999331.
a(55) must be larger than 10^11. (End) [Corrected by Felix Fröhlich, Mar 15 + 24 2019]
From Felix Fröhlich, Mar 16 2019: (Start)
a(55) > 10^23 if it exists (cf. De Geest link).
Numbers k such that A262988(k) = A055642(k). (End)

Examples

			The numbers resulting from cyclic permutations of the digits of 1193 are 1931, 9311 and 3119, respectively and all those numbers are prime, so 1193, 1931, 3119 and 9311 are terms of the sequence.
		

Crossrefs

Cf. base-b nonrepunit circular primes: A293657 (b=4), A293658 (b=5), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293662 (b=9).

Programs

  • Mathematica
    Select[Prime@ Range[10^5], Function[w, And[AllTrue[Array[FromDigits@ RotateRight[w, #] &, Length@ w - 1], PrimeQ], Union@ w != {1} ]]@ IntegerDigits@ # &] (* or *)
    Select[Flatten@ Array[FromDigits /@ Most@ Rest@ Tuples[{1, 3, 7, 9}, #] &, 9, 2], Function[w, And[AllTrue[Array[FromDigits@ RotateRight[w, #] &, Length@ w], PrimeQ], Union@ w != {1} ]]@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    is_circularprime(p) = my(d=digits(p), r=rot(d)); if(vecmin(d)==0, return(0), while(1, if(!ispseudoprime(eva(r)), return(0)); r=rot(r); if(r==d, return(1))))
    forprime(p=1, , if(vecmax(digits(p)) > 1, if(is_circularprime(p), print1(p, ", "))))
    
  • PARI
    /* The following is a much faster program that only tests numbers whose decimal expansion consists of digits from the set {1, 3, 7, 9}. */
    eva(n) = subst(Pol(n), x, 10)
    next_v(vec) = my(k=#vec); if(vecmin(vec)==9, vec=concat(vector(#vec, t, 1), [3]); return(vec)); while(k > 0, if(vec[k]==9, vec[k]=1, if(vec[k]==3, vec[k]=7; return(vec), vec[k]=vec[k]+2, return(vec))); k--)
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    search(n) = my(d=digits(n), e=[], ed=0); while(1, e=rot(d); while(1, if(!ispseudoprime(eva(e)), break, e=rot(e); if(e==d && ispseudoprime(eva(e)), print1(eva(d), ", "); break))); d=next_v(d))
    searchfrom(n) = if(n < 12, forprime(p=n, 10, print1(p, ", ")); search(13), my(d=digits(n)); for(k=1, #d, if(d[k]%2==0, d[k]++, if(d[k]==5, d[k]=7))); search(eva(d)))
    /* Start a search from 1 upwards as follows: */
    searchfrom(1) \\ Felix Fröhlich, Mar 23 2019

A001637 Numbers with an even number of digits.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 1000, 1001
Offset: 1

Views

Author

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/11 and 10/11, respectively. - Amiram Eldar, Feb 01 2021

Crossrefs

Cf. A001633 (complement), A055642.

Programs

  • Haskell
    a001637 n = a001637_list !! (n-1)
    a001637_list = filter (even . a055642) [0..]
    -- Reinhard Zumkeller, Jul 14 2014
    
  • Mathematica
    Select[Range[0, 1001], EvenQ[Length[IntegerDigits[#]]] &] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    is(n)=#Str(n)%2==0 \\ Charles R Greathouse IV, Nov 26 2018
    
  • PARI
    a(n) = n + 100^logint(110*n,100) \ 11; \\ Kevin Ryde, Nov 10 2022
    
  • Python
    def a(n): return n + (100**((len(str(110*n))-1)//2) - 1)//11
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Nov 10 2022 after Kevin Ryde

Formula

A055642(a(n)) mod 2 = 0. - Reinhard Zumkeller, Jul 14 2014
a(n) = n + (100^floor(log_100(110*n)) - 1)/11. - Kevin Ryde, Nov 10 2022

A046758 Equidigital numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 135, 137, 139
Offset: 1

Views

Author

Keywords

Comments

Write n as product of primes raised to powers, let D(n) = A050252 = total number of digits in product representation (number of digits in all the primes plus number of digits in all the exponents that are greater than 1) and l(n) = number of digits in n; sequence gives n such that D(n)=l(n).
The term "equidigital number" was coined by Recamán (1995). - Amiram Eldar, Mar 10 2024

Examples

			For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a member of this sequence.
		

References

  • Bernardo Recamán Santos, Equidigital representation: problem 2204, J. Rec. Math., Vol. 27, No. 1 (1995), pp. 58-59.

Crossrefs

Programs

  • Haskell
    a046758 n = a046758_list !! (n-1)
    a046758_list = filter (\n -> a050252 n == a055642 n) [1..]
    -- Reinhard Zumkeller, Jun 21 2011
    
  • Mathematica
    edQ[n_] := Total[IntegerLength[DeleteCases[Flatten[FactorInteger[n]], 1]]] == IntegerLength[n]; Join[{1}, Select[Range[140], edQ]] (* Jayanta Basu, Jun 28 2013 *)
  • PARI
    for(n=1, 100, s=""; F=factor(n); for(i=1, #F[, 1], s=concat(s, Str(F[i, 1])); s=concat(s, Str(F[i, 2]))); c=0; for(j=1, #F[, 2], if(F[j, 2]==1, c++)); if(#digits(n)==#s-c, print1(n, ", "))) \\ Derek Orr, Jan 30 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A046758_gen(): # generator of terms
        return (n for n in count(1) if n == 1 or len(str(n)) == sum(len(str(p))+(len(str(e)) if e > 1 else 0) for p, e in factorint(n).items()))
    A046758_list = list(islice(A046758_gen(),20)) # Chai Wah Wu, Feb 18 2022

Formula

A050252(a(n)) = A055642(a(n)). - Reinhard Zumkeller, Jun 21 2011

Extensions

More terms from Eric W. Weisstein

A091762 Last n digits of concatenation of first n primes.

Original entry on oeis.org

2, 23, 235, 2357, 35711, 571113, 7111317, 11131719, 113171923, 1317192329, 31719232931, 171923293137, 7192329313741, 19232931374143, 923293137414347, 2329313741434753, 32931374143475359, 293137414347535961, 9313741434753596167, 31374143475359616771, 137414347535961677173, 3741434753596167717379
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 04 2004

Keywords

Comments

a(n) = A019518(n) mod 10^n; a(n) mod 10^A055642(A000040(n)) = A000040(n); for the primes in this sequence see A091763.

Examples

			The first 5 primes are 2, 3, 5, 7, 11. The last 5 digits concatenated are 35711 so a(5) = 35711. - _David A. Corneth_, Sep 15 2019
		

Programs

  • Mathematica
    Table[FromDigits[Take[Flatten[IntegerDigits/@Prime[Range[n]]],-n]],{n,20}] (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    a(n) = {my(p = prime(n), v = digits(p)); while(#v < n, p = precprime(p - 1); v = concat(digits(p), v)); fromdigits(vector(n, i, v[#v - n + i]))} \\ David A. Corneth, Sep 15 2019

Extensions

More terms from David A. Corneth, Sep 15 2019

A171797 A modified Sisyphus function: a(n) = concatenation of (number of digits in n) (number of even digits) (number of odd digits).

Original entry on oeis.org

110, 101, 110, 101, 110, 101, 110, 101, 110, 101, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2010

Keywords

Comments

Start with n, repeatedly apply the map i -> a(i). Then every number converges to 312. - Eric Angelini and Alexandre Wajnberg, Oct 15 2010

Examples

			11 has 2 digits, both odd, so a(11) = 202.
12 has 2 digits, one even and one odd, so a(12)=211. Then a(211) = 312.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Cf. A073053 (Sisyphus), A171798, A171813, A055642, A196563, A196564, A308002, A308003 (another version).
A100961 gives steps to reach 312.

Programs

  • Haskell
    a171797 n = read $ concatMap (show . ($ n))
                       [a055642, a196563, a196564] :: Integer
    -- Reinhard Zumkeller, Feb 22 2012, Oct 15 2010
    
  • Maple
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1,n2,n1-n2]) ; end proc:
    seq(A171797(n),n=1..80) ; # R. J. Mathar, Oct 15 2010 and Oct 18 2010
  • Python
    def a(n):
        s = str(n); e = sum(d in "02468" for d in s)
        return int("".join(map(str, (len(s), e, len(s)-e))))
    print([a(n) for n in range(52)]) # Michael S. Branicky, Jun 15 2021

Extensions

More terms from R. J. Mathar, Oct 15 2010
a(0) added by N. J. A. Sloane, May 12 2019

A227362 Distinct digits of n arranged in decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 21, 31, 41, 51, 61, 71, 81, 91, 20, 21, 2, 32, 42, 52, 62, 72, 82, 92, 30, 31, 32, 3, 43, 53, 63, 73, 83, 93, 40, 41, 42, 43, 4, 54, 64, 74, 84, 94, 50, 51, 52, 53, 54, 5, 65, 75, 85, 95, 60, 61, 62, 63, 64, 65, 6, 76, 86
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2013

Keywords

Comments

a(n) <= 9876543210; a(a(n)) = a(n);
A055642(a(n)) <= 10;
A055642(a(n)) <= A055642(n), A055642(a(n)) = A055642(n) iff A178788(n) = 1;
a(A109303(n)) < A109303(n); a(A009995(n)) = A009995(n); a(A071589(n)) > A071589(n);
a(n) = A151949(n) + A180410(n).

Crossrefs

Programs

  • Haskell
    import Data.List (nub, sort)
    a227362 = read . reverse . sort . nub . show :: Integer -> Integer
    
  • Maple
    a:= n-> parse(cat(sort([{convert(n, base, 10)[]}[]], `>`)[])):
    seq(a(n), n=0..68);  # Alois P. Heinz, Sep 21 2022
  • Mathematica
    f[n_] := FromDigits[Reverse@ Union@ IntegerDigits@ n]; f /@ Range[0, 68] (* Michael De Vlieger, Apr 16 2015, corrected by Robert G. Wilson v *)
  • PARI
    a(n) = {if (n == 0, d = [0], d = digits(n)); eval(subst(Pol(vecsort(d,,12)), x, 10));} \\ Michel Marcus, Apr 16 2015
    
  • PARI
    a(n)=fromdigits(vecsort(digits(n),,12)) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    def A227362(n): return int(''.join(sorted(set(str(n)),reverse=True))) # Chai Wah Wu, Nov 23 2022

A293142 Largest nonrepunit base-n circular prime (conjectured).

Original entry on oeis.org

7, 1013, 3121, 211
Offset: 3

Views

Author

Felix Fröhlich, Oct 01 2017

Keywords

Comments

A circular prime is a prime where all numbers produced by cyclic permutations of the digits are also prime.
No nonrepunit circular prime exists in base 2, since any nonrepunit prime contains at least one 0 digit in its base-2 representation that yields an even number and thus a composite when permuted to the least significant place, so the offset of the sequence is 3.
a(3)-a(6) were found via a brute-force approach searching from the largest prime with 12 base-n digits backwards. The number of base-n digits in a(n) for n = 3, 4, 5, 6 is 2, 5, 5, 3, respectively. Since this is much shorter than 12 digits, it is conjectured that the terms are the maximal circular primes for those bases. This also verifies that no circular primes with a length between A055642(a(n)) and 13 digits exist in bases 3, 4, 5 and 6.
Candidates for a(7), a(8) and a(9) are 13143449029, 16244441 and 4717103, respectively.
a(10) is probably 999331. If not, it must have more than 23 digits (cf. De Geest link).

Examples

			1013 written in base 4 is 33311. The base-4 numbers 33311, 33113, 31133, 11333, 13331 written in base 10 are 1013, 983, 863, 383 and 509, respectively. All those base-10 numbers are prime and since there is no larger prime up to 12 base-4 digits where all cyclic permutations of base-4 digits are primes, 1013 is conjectured to be the largest nonrepunit circular prime in base 4.
		

Crossrefs

Cf. base-b nonrepunit circular primes: A293657 (b=4), A293658 (b=5), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293662 (b=9), A293663 (b=10).

Programs

  • PARI
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
    is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1))))
    a(base, maxlength) = my(p=precprime(base^maxlength)); while(p > 2, if(vecmin(digits(p, base))!=vecmax(digits(p, base)), if(is_circularprime(p, base), return(p))); p=precprime(p-1))
    for(n=3, 6, print1(a(n, 12), ", ")) \\ start searching a(n) from largest prime with 12 base-n digits backwards

A034888 Number of digits in 3^n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 32, 33, 33
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000244 (powers of 3), A055642 (number of digits of n).

Programs

  • Magma
    [#Intseq(3^n): n in [0..100] ]; // Vincenzo Librandi, Jun 23 2015
    
  • Maple
    seq(floor(n*ln(3)/ln(10))+1, n=0..100);
  • Mathematica
    Table[Length[IntegerDigits[3^n]], {n, 0, 100}] (* T. D. Noe, Mar 20 2012 *)
    IntegerLength[3^Range[0,70]] (* Harvey P. Dale, Jan 28 2015 *)
  • PARI
    a(n)=#Str(3^n) \\ Charles R Greathouse IV, Jul 03 2013
    
  • Python
    def a(n): return len(str(3**n))
    print([a(n) for n in range(70)]) # Michael S. Branicky, Dec 23 2022

Formula

a(n) = floor(n*log(3)/log(10)) + 1. E.g., a(10)=5 because 3^10 = 59049 and floor(10*log(3)/log(10)) + 1 = 4 + 1 = 5. - Jaap Spies, Dec 15 2003
a(n) = A055642(3^n) = A055642(A000244(n)). - Michel Marcus, Jun 23 2015

A036299 Binary Fibonacci (or rabbit) sequence.

Original entry on oeis.org

1, 10, 101, 10110, 10110101, 1011010110110, 101101011011010110101, 1011010110110101101011011010110110, 1011010110110101101011011010110110101101011011010110101
Offset: 0

Views

Author

Keywords

Comments

A055642(a(n)) = A000045(n+2). - Reinhard Zumkeller, Jul 06 2014

References

  • N. G. De Bruijn, (1989, January). Updown generation of Beatty sequences. Koninklijke Nederlandsche Akademie van Wetenschappen (Indationes Math.), Proc., Ser. A, 92:4 (1968), 385-407. See Fig. 3.
  • J. Kappraff, D. Blackmore and G. Adamson, Phyllotaxis as a dynamical system: a study in number, Chap. 17 of Jean and Barabe, eds., Symmetry in Plants, World Scientific, Studies in Math. Biology and Medicine, Vol. 4.

Crossrefs

Column k=10 of A144287.

Programs

  • Haskell
    a036299 n = a036299_list !! n
    a036299_list = map read rabbits :: [Integer] where
       rabbits = "1" : "10" : zipWith (++) (tail rabbits) rabbits
    -- Reinhard Zumkeller, Jul 06 2014
    
  • Mathematica
    nxt[{a_,b_}]:=FromDigits[Join[IntegerDigits[b],IntegerDigits[a]]]; Transpose[NestList[{Last[#],nxt[#]}&,{1,10},10]][[1]] (* Harvey P. Dale, Oct 16 2011 *)
  • Python
    def aupton(terms):
      alst = [1, 10]
      while len(alst) < terms: alst.append(int(str(alst[-1]) + str(alst[-2])))
      return alst[:terms]
    print(aupton(9)) # Michael S. Branicky, Jan 10 2021

Formula

a(n+1) = concatenation of a(n) and a(n-1).
Previous Showing 81-90 of 506 results. Next