cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 146 results. Next

A194589 a(n) = A194588(n) - A005043(n); complementary Riordan numbers.

Original entry on oeis.org

0, 0, 1, 1, 5, 11, 34, 92, 265, 751, 2156, 6194, 17874, 51702, 149941, 435749, 1268761, 3700391, 10808548, 31613474, 92577784, 271407896, 796484503, 2339561795, 6877992334, 20236257626, 59581937299, 175546527727, 517538571125, 1526679067331, 4505996000730
Offset: 0

Views

Author

Peter Luschny, Aug 30 2011

Keywords

Comments

The inverse binomial transform of a(n) is A194590(n).

Crossrefs

Programs

  • Maple
    # First method, describes the derivation:
    A056040 := n -> n!/iquo(n,2)!^2:
    A057977 := n -> A056040(n)/(iquo(n,2)+1);
    A001006 := n -> add(binomial(n,k)*A057977(k)*irem(k+1,2),k=0..n):
    A005043 := n -> `if`(n=0,1,A001006(n-1)-A005043(n-1)):
    A189912 := n -> add(binomial(n,k)*A057977(k),k=0..n):
    A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
    A194589 := n -> A194588(n)-A005043(n):
    # Second method, more efficient:
    A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):
    A194589 := proc(n) local k;
    (n mod 2)+(1/2)*add((-1)^k*binomial(n,k)*A100071(k+1),k=1..n) end:
    # Alternatively:
    a := n -> `if`(n<3,iquo(n,2),hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
    Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n,0,30}] (* Peter Luschny, Mar 07 2017 *)
  • Maxima
    a(n):=sum(binomial(n+2,k)*binomial(n-k,k),k,0,(n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
    
  • PARI
    a(n) = sum(k=0, n/2, binomial(n+2,k)*binomial(n-k,k));
    vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015

Formula

a(n) = sum_{k=0..n} C(n,k)*A194590(k).
a(n) = (n mod 2)+(1/2)*sum_{k=1..n} (-1)^k*C(n,k)*(k+1)$*((k+1)/2)^(k mod 2). Here n$ denotes the swinging factorial A056040(n).
a(n) = PSUMSIGN([0,0,1,2,6,16,45,..] = PSUMSIGN([0,0,A005717]) where PSUMSIGN is from Sloane's "Transformations of integer sequences". - Peter Luschny, Jan 17 2012
A(x) = B'(x)*(1/x^2-1/(B(x)*x)), where B(x)/x is g.f. of A005043. - Vladimir Kruchinin, Sep 28 2015
a(n) = Sum_{k=0..n/2} C(n+2,k)*C(n-k,k). - Vladimir Kruchinin, Sep 28 2015
a(n) = hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4) for n>=3. - Peter Luschny, Mar 07 2017
a(n) ~ 3^(n + 1/2) / (8*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 17 2024

A219931 Coefficients related to an asymptotic expansion of the logarithm of the central binomial.

Original entry on oeis.org

1, 6, 5, 28, 9, 22, 13, 120, 17, 38, 21, 92, 25, 54, 29, 496, 33, 70, 37, 156, 41, 86, 45, 376, 49, 102, 53, 220, 57, 118, 61, 2016, 65, 134, 69, 284, 73, 150, 77, 632, 81, 166, 85, 348, 89, 182, 93, 1520, 97, 198, 101, 412, 105, 214, 109, 888, 113, 230, 117
Offset: 1

Views

Author

Peter Luschny, Dec 01 2012

Keywords

Comments

An asymptotic expansion of the logarithm of the central binomial (A000984) for n>0 is given by log(binomial(2*n,n)) ~ (n*log(16)-log(Pi)-log(n) + sum_{k>=1}((-4)^(-k)*A002425(k)/a(k)*n^(1-2*k)))/2.
An asymptotic expansion of the logarithm of the swinging factorial (A056040) for n>1 is given by log(swing(n)) ~ (n*log(4)-log(Pi)-(-1)^n*(log(n/2) - (1/2)*sum_{k>=1}((-1)^k*A002425(k)/a(k)*n^(1-2*k))))/2.

Examples

			log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13).
log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
		

Crossrefs

Programs

  • Maple
    Coeff_list := proc(len) local n;
    asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1),n,2*len+3);
    subs(n=1/n,simplify(convert(%,polynom)));
    [seq(4*coeff(unapply(%,n)(n),n,2*k+1),k=0..len-1)] end:
    A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
  • Mathematica
    max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Feb 17 2014 *)
    a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2014, after Peter Luschny *)

Formula

a(n) = denominator(2*E(2*n-1, 1)/(2*n-1)) where E(n, x) is the Euler polynomial. - Peter Luschny, Apr 03 2014
Warning: a(n) != (2*n-1)*2^valuation(n, 2). This was mistakenly assumed several times in the past, see A385054. - Peter Luschny, Jun 17 2025

Extensions

Edited and incorrect entries removed by Georg Fischer and Peter Luschny, Jun 16 2025

A253665 a(n) = 2^n*n!/(floor(n/2)!)^2.

Original entry on oeis.org

1, 2, 8, 48, 96, 960, 1280, 17920, 17920, 322560, 258048, 5677056, 3784704, 98402304, 56229888, 1686896640, 843448320, 28677242880, 12745441280, 484326768640, 193730707456, 8136689713152, 2958796259328, 136104627929088, 45368209309696, 2268410465484800
Offset: 0

Views

Author

Peter Luschny, Feb 01 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 2^n*n!/iquo(n,2)!^2: seq(a(n), n=0..25);
  • Mathematica
    Table[2^n*n!/Floor[n/2]!^2, {n, 0, 25}] (* Michael De Vlieger, Feb 02 2015 *)
    CoefficientList[Series[(1 + 2 (1 - 8 x) x)/(1 - 16 x^2)^(3/2), {x, 0, 20}],x] (* Benedict W. J. Irwin, Aug 15 2016 *)
  • PARI
    a(n)=2^n*n!/(n\2)!^2 \\ Charles R Greathouse IV, Aug 25 2016

Formula

a(n) = 2^n*A056040(n).
a(2*n) = 4^n*C(2*n, n) = A098430(n).
a(n) = sum(k=0..n, C(n,k)*n!/(floor(n/2)!)^2) = sum(k=0..n, A253666(n,k)).
G.f.: (1+2*(1-8*x)*x)/(1-16*x^2)^(3/2). - Benedict W. J. Irwin, Aug 15 2016

A277393 a(n) = Integral_{x=0..infinity} H_n(x) * exp(-x), where H_n(x) is n-th Hermite polynomial.

Original entry on oeis.org

1, 2, 6, 36, 300, 3000, 35880, 502320, 8038800, 144698400, 2893937760, 63666630720, 1527999802560, 39727994866560, 1112383838966400, 33371515168992000, 1067888485926662400, 36308208521506521600, 1307095506756591552000, 49669629256750478976000
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 12 2016

Keywords

Comments

Hermite polynomials can be generalized to non-integer or even complex indexes using their representation as a contour integral (or as a solution to a differential equation), in which case the first formula for a(n) and the functional relation (recurrence) given below remain valid for all complex n.
This is using the "physicist's" version of Hermite polynomials. - Robert Israel, Oct 14 2016

References

  • George E. Andrews, Richard Askey, Ranjan Roy, Special Functions, Cambridge University Press (p.278 for Hermite polynomials).

Crossrefs

Programs

  • Maple
    a := proc(n) 4^x*sqrt(Pi)*exp(-1/4)*(GAMMA(1+x/2, -1/4)/((-1)^(x/2)*GAMMA((1-x)/2)) + x*GAMMA((x+1)/2, -1/4)/(2*(-1)^((x-1)/2)*GAMMA(1-x/2))); simplify(limit (%,x=n)) end: seq(a(n),n=0..9); # Peter Luschny, Oct 14 2016
    a := n -> (cos(Pi*n/2)*GAMMA((n+1)/2)*GAMMA(n/2+1, -1/4) + I*sin(Pi*n/2)*GAMMA(n/2+1)*GAMMA((n+1)/2, -1/4))/(sqrt(Pi)*exp(1/4)*(I/4)^n): seq(a(n), n=0..20); # Vladimir Reshetnikov, Oct 14 2016
    f:= n -> int(orthopoly[H](n,t)*exp(-t),t=0..infinity):
    map(f, [$0..30]); # Robert Israel, Oct 14 2016
  • Mathematica
    FunctionExpand@Table[4^n Sqrt[Pi] Exp[-1/4] (Gamma[n/2 + 1, -1/4]/((-1)^(n/2) Gamma[(1 - n)/2]) + n  Gamma[(n + 1)/2, -1/4]/(2 (-1)^((n - 1)/2) Gamma[1 - n/2])), {n, 0, 20}]
    Table[Integrate[HermiteH[n, x]*Exp[-x], {x, 0, Infinity}], {n, 0, 10}] (* G. C. Greubel, Oct 13 2016 *)
    FunctionExpand@Table[2^n*(n!/Floor[n/2]!)*Gamma[Ceiling[(n+1)/2],-1/4]*Exp[-1/4], {n,0,19}] (* Peter Luschny, Oct 17 2016 *)
  • Sage
    def A():
        yield 1
        yield 2
        n, a, h, i = 2, 6, -2, 2
        while True:
            yield a
            n += 1
            a *= n << 1
            if is_even(n):
                i += 4
                h *= -i
                a += h
    H = A(); print([next(H) for  in range(20)]) # _Peter Luschny, Oct 16 2016

Formula

a(n) = 4^n*sqrt(Pi)*exp(-1/4)*(Gamma(1+n/2, -1/4)/((-1)^(n/2)*Gamma((1-n)/2)) + n*Gamma((n+1)/2, -1/4)/(2*(-1)^((n-1)/2)*Gamma(1-n/2))), assuming that 1/Gamma(z) is an entire function of z having zeros at nonpositive integer arguments.
Recurrence: 2*((n+1)*a(n) + 2*n*(n-1)*a(n-2)) = 2*n*a(n-1) + a(n+1).
E.g.f.: exp(-x^2)/(1-2*x).
a(n)/n! ~ exp(-1/4) * 2^n. - Vaclav Kotesovec, Oct 14 2016
a(2*n) = 2^n*(2*n-1)!!*A001907(n), a(2*n+1) = 2^(n+1)*(2*n+1)!!*A001907(n). - Vladimir Reshetnikov, Oct 14 2016
From Peter Luschny, Oct 17 2016: (Start)
a(n) = 2^n*(n!/floor(n/2)!)*Gamma(ceiling((n+1)/2),-1/4)*exp(-1/4).
The swinging factorial A056040(n) divides a(n).
Recurrence: If n is odd then a(n) = a(n-1)*n*2 else a(n) = a(n-1)*n*2 + (-1)^[n/2]* n!/[n/2]!. See the Sage implementation. (End)

A328000 a(n) = Sum_{k=0..n}(k!*(n - k)!)/(floor(k/2)!*floor((n - k)/2)!)^2.

Original entry on oeis.org

1, 2, 5, 16, 28, 96, 160, 512, 896, 2560, 4864, 12288, 25600, 57344, 131072, 262144, 655360, 1179648, 3211264, 5242880, 15466496, 23068672, 73400320, 100663296, 343932928, 436207616, 1593835520, 1879048192, 7314866176, 8053063680, 33285996544, 34359738368
Offset: 0

Views

Author

Peter Luschny, Oct 01 2019

Keywords

Crossrefs

Programs

  • Magma
    [IsOdd(n) select 2^(n - 1)*(n + 1) else 2^(n - 5)*(n*(n + 2) + 32):n in [0..30]]; // Marius A. Burtea, Feb 05 2020
  • Maple
    swing := n -> n!/iquo(n,2)!^2: a := n -> add(swing(k)*swing(n-k), k=0..n):
    seq(`if`(irem(n, 2) = 0, 2 + n*(n + 2)/16, n + 1)*2^(n - 1), n=0..31);
  • Mathematica
    A328000List[len_] := CoefficientList[Series[(4 x^2 - x - 1)^2 / (1 - 4 x^2)^3 , {x, 0, len}], x]; A328000List[31]
    LinearRecurrence[{0,12,0,-48,0,64},{1,2,5,16,28,96},40] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    x='x + O('x^32);
    Vec(serlaplace(((3*x + 8)*sinh(2*x) + (2*x^2 + 16*(x + 1))*cosh(2*x))/16))
    
  • PARI
    Vec((1 + x - 4*x^2)^2 / ((1 - 2*x)^3*(1 + 2*x)^3) + O(x^30)) \\ Colin Barker, Feb 05 2020
    

Formula

a(n) = Sum_{k=0..n} s(k)*s(n-k) where s(n) = A056040(n).
a(n) = [x^n] (4*x^2 - x - 1)^2 / (1 - 4*x^2)^3.
a(n) = 2^(n - 5)*(n*(n + 2) + 32) if n even else 2^(n - 1)*(n + 1).
a(2*n) = A327999(n).
a(2*n-1) = A002699(n), (with a(-1) = 0).
a(2^n-1) = 2^(2^n - 2 + n) for n >= 1.
2*a(2*n)/2^n = A081908(n+1).
4*a(2*n)/4^n = A145018(n+1).
2*a(2*n-1)/4^n = A001477(n).
From Stefano Spezia, Oct 19 2019: (Start)
a(n) = n! [x^n] (1/32)*exp(-2*x)*(8 + exp(4*x)*(8 + x)*(3 + 2*x) + x*(13 + 2*x)).
a(n) = 12*a(n-2) - 48*a(n-4) + 64*a(n-6) for n > 5. (End)

A069945 Let M_k be the k X k matrix M_k(i,j)=1/binomial(i+n,j); then a(n)=1/det(M_(n+1)).

Original entry on oeis.org

1, -6, -360, 252000, 2222640000, -258768639360000, -410299414270986240000, 9061429740221589431500800000, 2835046804394206618956825845760000000, -12733381268715468286016211650968992153600000000
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

If k>n+1 det(M_k)=0

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-François Alcover, Jul 06 2019 *)
  • PARI
    for(n=0,10,print1(1/matdet(matrix(n+1,n+1,i,j,1/binomial(i+n,j))),","))
    
  • Sage
    def A069945(n): return (-1)^(n//2)*mul(binomial(i,i//2) for i in (1..2*n-1))
    [A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012

Formula

|a(n)| = det(M^(-1)), where M is an n X n matrix with M[i, j]=i/(i+j-1) (or j/(i+j-1)). |a(n)| = 1/det(HilbertMatrix(n))/n! = A005249(n)/n!. - Vladeta Jovovic, Jul 26 2003
|a(n)| = Product_{i=1..2n-1} binomial(i,floor(i/2)). - Peter Luschny, Sep 18 2012
|a(n)| = (Product_{i=1..2n-1} A056040(i))/n! = A163085(2*n-1)/n!. - Peter Luschny, Sep 18 2012

A151332 Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 4 n steps taken from {(-1, -1), (-1, 1), (1, 0)}.

Original entry on oeis.org

1, 2, 28, 660, 20020, 705432, 27457584, 1147334760, 50561468100, 2322279359400, 110250966574320, 5377893986141040, 268315541493159888, 13645106597301720800, 705378072079232798400, 36985702814877062972880, 1963555139681260758978660, 105393959626252993455319560
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

a(n) is also the number of words of 4n length consisting of 2n X's, n Y's and n Z's such that any initial segment of the string has at least as many X's as Y+Z's, and at least as many Y's as Z's. - Istvan Marosi, Apr 27 2014

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (4*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1))/(n*(n+1)*(2*n+1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 27 2014
    S := proc(a) global x; series(a,x=0,20) end:
    ogf := S(int(S(x^(-1/2)*hypergeom([1/4,3/4],[2],64*x)),x)/(2*x^(1/2)));  # Mark van Hoeij, Aug 14 2014
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 4 n], {n, 0, 25}]

Formula

a(n) = A000108(n)*A000108(2n). - Istvan Marosi, Apr 27 2014
a(n) = A056040(4*n)*A056040(2*n)/A000384(n+1). - Peter Luschny, Apr 28 2014
G.f.: hypergeom([1/4, 1/2, 3/4], [3/2, 2], 64*x). - Robert Israel, Aug 14 2014
D-finite with recurrence n*(n+1)*(2*n+1)*a(n) -4*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022

A163086 Product of first n terms of A163085.

Original entry on oeis.org

1, 1, 2, 24, 1728, 3732480, 161243136000, 975198486528000000, 412860031256494080000000000, 110116706384632080236544000000000000000, 7401233839469056679744633202278400000000000000000000
Offset: 0

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) local i; mul(A163085(i),i=0..n) end;
  • Mathematica
    b[0] = 1; b[n_] := b[n] = b[n-1] n! / Floor[n/2]!^2;
    a[n_] := Product[b[k], {k, 0, n}];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 11 2019 *)
  • Sage
    def A163086(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i+1)^(n-i) for i in (0..n))
    [A163086(i) for i in (0..10)] # Peter Luschny, Sep 18 2012

Formula

a(n) = product_{i=0..n} A056040(i+1)^(n-i). - Peter Luschny, Sep 18 2012

A163773 Row sums of the swinging derangement triangle (A163770).

Original entry on oeis.org

1, 1, 4, 15, -14, 185, -454, 2107, -6194, 22689, -70058, 234971, -734304, 2368379, -7404318, 23417955, -72988938, 228324569, -708982738, 2202742447, -6815736144, 21077285943, -65016664062, 200371842727, -616463969324, 1894794918275, -5816606133674, 17839764136377
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Crossrefs

Cf. A163770.

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(i),i=k..n), k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 03 2017 *)

Formula

a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).

Extensions

Terms a(18) onward added by G. C. Greubel, Aug 03 2017

A163775 Row sums of triangle A163772.

Original entry on oeis.org

1, 11, 73, 403, 2021, 9567, 43611, 193683, 844213, 3629083, 15437951, 65143503, 273148279, 1139548469, 4734740493, 19606960755, 80969809797, 333601494651
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Crossrefs

Cf. A163772.

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(2*i+1),i=k..n),k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)* Binomial[n - k, n - i]*sf[2*i + 1], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 04 2017 *)

Formula

a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).
Previous Showing 101-110 of 146 results. Next