cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 146 results. Next

A220002 Numerators of the coefficients of an asymptotic expansion in even powers of the Catalan numbers.

Original entry on oeis.org

1, 5, 21, 715, -162877, 19840275, -7176079695, 1829885835675, -5009184735027165, 2216222559226679575, -2463196751104762933637, 1679951011110471133453965, -5519118103058048675551057049, 5373485053345792589762994345215, -12239617587594386225052760043303511
Offset: 0

Views

Author

Peter Luschny, Dec 27 2012

Keywords

Comments

Let N = 4*n+3 and A = sum_{k>=0} a(k)/(A123854(k)*N^(2*k)) then
C(n) ~ 8*4^n*A/(N*sqrt(N*Pi)), C(n) = (4^n/sqrt(Pi))*(Gamma(n+1/2)/ Gamma(n+2)) the Catalan numbers A000108.
The asymptotic expansion of the Catalan numbers considered here is based on the Taylor expansion of square root of the sine cardinal. This asymptotic series involves only even powers of N, making it more efficient than the asymptotic series based on Stirling's approximation to the central binomial which involves all powers (see for example: D. E. Knuth, 7.2.1.6 formula (16)). The series is discussed by Kessler and Schiff but is included as a special case in the asymptotic expansion given by J. L. Fields for quotients Gamma(x+a)/Gamma(x+b) and discussed by Y. L. Luke (p. 34-35), apparently overlooked by Kessler and Schiff.

Examples

			With N = 4*n+3 the first few terms of A are A = 1 + 5/(4*N^2) + 21/(32*N^4) + 715/(128*N^6) - 162877/(2048*N^8) + 19840275/(8192*N^10). With this A C(n) = round(8*4^n*A/(N*sqrt(N*Pi))) for n = 0..39 (if computed with sufficient numerical precision).
		

References

  • Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees—History of Combinatorial Generation, 2006.
  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.

Crossrefs

The logarithmic version is A220422. Appears in A193365 and A220466.
Cf. A220412.

Programs

  • Maple
    A220002 := proc(n) local s; s := n -> `if`(n > 0, s(iquo(n,2))+n, 0);
    (-1)^n*mul(4*i+2, i = 1..2*n)*2^s(iquo(n,2))*coeff(taylor(sqrt(sin(x)/x), x,2*n+2), x, 2*n) end: seq(A220002(n), n = 0..14);
    # Second program illustrating J. L. Fields expansion of gamma quotients.
    A220002 := proc(n) local recF, binSum, swing;
    binSum := n -> add(i,i=convert(n,base,2));
    swing := n -> n!/iquo(n, 2)!^2;
    recF := proc(n, x) option remember; `if`(n=0, 1, -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*recF(n-2*k-2,x),k=0..n/2-1)) end: recF(2*n,-1/4)*2^(3*n-binSum(n))*swing(4*n+1) end:
  • Mathematica
    max = 14; CoefficientList[ Series[ Sqrt[ Sinc[x]], {x, 0, 2*max+1}], x^2][[1 ;; max+1]]*Table[ (-1)^n*Product[ (2*k+1), {k, 1, 2*n}], {n, 0, max}] // Numerator (* Jean-François Alcover, Jun 26 2013 *)
  • Sage
    length = 15; T = taylor(sqrt(sin(x)/x),x,0,2*length+2)
    def A005187(n): return A005187(n//2) + n if n > 0 else 0
    def A220002(n):
        P = mul(4*i+2 for i in (1..2*n)) << A005187(n//2)
        return (-1)^n*P*T.coefficient(x, 2*n)
    [A220002(n) for n in range(length)]
    
  • Sage
    # Second program illustrating the connection with the Euler numbers.
    def A220002_list(n):
        S = lambda n: sum((4-euler_number(2*k))/(4*k*x^(2*k)) for k in (1..n))
        T = taylor(exp(S(2*n+1)),x,infinity,2*n-1).coefficients()
        return [t[0].numerator() for t in T][::-1]
    A220002_list(15)

Formula

Let [x^n]T(f(x)) denote the coefficient of x^n in the Taylor expansion of f(x) then r(n) = (-1)^n*prod_{i=1..2n}(2i+1)*[x^(2*n)]T(sqrt(sin(x)/x)) is the rational coefficient of the asymptotic expansion (in N=4*n+3) and a(n) = numerator(r(n)) = r(n)*2^(3*n-bs(n)), where bs(n) is the binary sum of n (A000120).
Also a(n) = numerator([x^(2*n)]T(exp(S))) where S = sum_{k>=1}((4-E(2*k))/ (4*k)*x^(2*k)) and E(n) the Euler numbers A122045.
Also a(n) = sf(4*n+1)*2^(3*n-bs(n))*F_{2*n}(-1/4) where sf(n) is the swinging factorial A056040, bs(n) the binary sum of n and F_{n}(x) J. L. Fields' generalized Bernoulli polynomials A220412.
In terms of sequences this means
r(n) = (-1)^n*A103639(n)*A008991(n)/A008992(n),
a(n) = (-1)^n*A220371(n)*A008991(n)/A008992(n).
Note that a(n) = r(n)*A123854(n) and A123854(n) = 2^A004134(n) = 8^n/2^A000120(n).
Formula from Johannes W. Meijer:
a(n) = d(n+1)*A098597(2*n+1)*(A008991(n)/A008992(n)) with d(1) = 1 and
d(n+1) = -4*(2*n+1)*A161151(n)*d(n),
d(n+1) = (-1)^n*2^(-1)*(2*(n+1))!*A060818(n)*A048896(n).

A107373 a(n) = (n/2)*binomial(n-1, floor((n-1)/2)) - 2^(n-2).

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 38, 76, 187, 374, 874, 1748, 3958, 7916, 17548, 35096, 76627, 153254, 330818, 661636, 1415650, 2831300, 6015316, 12030632, 25413342, 50826684, 106853668, 213707336, 447472972, 894945944, 1867450648, 3734901296, 7770342787, 15540685574
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2007

Keywords

Comments

Total number of descents in all faro permutations of length n-1. Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one. See also A340567, A340568 and A340569. - Sergey Kirgizov, Jan 11 2021

Crossrefs

Programs

Formula

a(2*n) = 2*A000531(n-1); a(2*n+1) = A000531(n). - Max Alekseyev, Sep 30 2013
(1-n)*a(n) + 2*(n-1)*a(n-1) + 4*(n-2)*a(n-2) + 8*(-n+2)*a(n-3) = 0. - R. J. Mathar, May 26 2013

A137762 Central elements in writing first the numerator and then the denominator (left to right) of Leibniz's harmonic-like triangle.

Original entry on oeis.org

1, 1, 5, 6, 31, 30, 209, 140, 1471, 630, 10625, 2772
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 13 2008

Keywords

Examples

			1/1; --> 1 1
1/2, 1/2; -->
1/3, 5/6, 1/3; --> 5 6
1/4, 7/12, 7/12, 1/4; --> ...
1/5, 9/20, 31/30, 9/20, 1/5;
		

Crossrefs

Formula

From M. F. Hasler, Jan 25 2012: (Start)
a(2*n-1) = A137763(2*n).
a(2*n) = A137763(2*n-1) = A046212(2*n-1) = A056040(2*n-1) = A100071(2*n-1). (End)

A137763 Central elements in writing first the denominator and then the numerator(left to right) of Leibniz's harmonic-like triangle.

Original entry on oeis.org

1, 1, 6, 5, 30, 31, 140, 209, 630, 1471, 2772, 10625
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 13 2008

Keywords

Examples

			1/1; --> 1 1
1/2, 1/2; -->
1/3, 5/6, 1/3;  --> 6 5
1/4, 7/12, 7/12, 1/4; --> ...
1/5, 9/20, 31/30, 9/20, 1/5;
		

Crossrefs

Formula

a(2n) = A137762(2n-1); a(2n-1) = A137762(2n) = A046212(2n-1) = A056040(2n-1) = A100071(2n-1). - M. F. Hasler, Jan 25 2012

A162246 Swinging polynomials, coefficients read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 6, 3, 3, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 6, 6, 30, 15, 60, 20, 60, 15, 30, 6, 6, 1, 1, 7, 7, 42, 21, 105, 35, 140, 35, 105, 21, 42, 7, 7, 1
Offset: 0

Views

Author

Peter Luschny, Jun 28 2009

Keywords

Comments

Let p(n,x) = (1+x^2)^n+n*x*(1+x^2)^(n-1), then T(n,k) are the coefficients of these polynomials, read by rows, n = 0,1,...
The central numbers of the rows, i.e., the coefficients of x^n of p(n,x), are the swinging factorial numbers A056040(n).
Row sums: sum_{k=0..2n} T(n,k) = A001792(n).
sum_{k=0..2n} isodd(n+k)T(n,k) = 2^n(isodd(n)+(n/2)isodd(n+1))
= 0, 2, 4, 8, 32, 32, 192, 128, 1024, 512, 5120, ...
sum_{k=0..2n} iseven(n+k)T(n,k) = 2^n(isodd(n)(n/2)+isodd(n+1))
= 1, 1, 4, 12, 16, 80, 64, 448, 256, 2304, 1024, ...

Examples

			The central coefficients are marked by [].
[1]
1,[1],1
1,2,[2],2,1
1,3,3,[6],3,3,1
1,4,4,12,[6],12,4,4,1
1,5,5,20,10,[30],10,20,5,5,1
1,6,6,30,15,60,[20],60,15,30,6,6,1
1,7,7,42,21,105,35,[140],35,105,21,42,7,7,1
p(0,x) = 1
p(1,x) = x^2+x+1
p(2,x) = x^4+2x^3+2x^2+2x+1
p(3,x) = x^6+3x^5+3x^4+6x^3+3x^2+3x+1
p(4,x) = x^8+4x^7+4x^6+12x^5+6x^4+12x^3+4x^2+4x+1
p(5,x) = x^10+5x^9+5x^8+20x^7+10x^6+30x^5+10x^4+20x^3+5x^2+5x+1
		

Crossrefs

Programs

  • Maple
    p := (n,x) -> (1+x^2)^n+n*x*(1+x^2)^(n-1):
    seq(print(seq(coeff(expand(p(n,x)),x,i),i=0..2*n)),n=0..7);
    T := (n,k) -> n!/((n-ceil(k/2))!*floor(k/2)!);
    seq(print(seq(T(n,k),k=0..2*n)),n=0..7);
  • Mathematica
    t[n_, k_] := If[EvenQ[k], Binomial[n, k/2], Binomial[n, (k-1)/2]*(n-(k-1)/2)]; Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = n!/((n-ceiling(k/2))!*floor(k/2)!).

A163869 Binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).

Original entry on oeis.org

1, 7, 43, 249, 1395, 7653, 41381, 221399, 1175027, 6196725, 32512401, 169863147, 884318973, 4589954619, 23761814955, 122735222505, 632698778835, 3255832730565, 16728131746145, 85826852897675, 439793834236745, 2251006269442815, 11509340056410735, 58790764269668805
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

Also a(n) = Sum_{i=0..n} binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).

Crossrefs

Programs

  • Maple
    a := proc(n) local i; add(binomial(n,i)/Beta(i+1,i+1), i=0..n) end:
  • Mathematica
    CoefficientList[Series[-Sqrt[x-1]/(5*x-1)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[ Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 26 2013 *)
    Table[Hypergeometric2F1[3/2, -n, 1, -4], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)

Formula

From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: -sqrt(x-1)/(5*x-1)^(3/2).
Recurrence: n*a(n) = (6*n+1)*a(n-1) - 5*(n-1)*a(n-2).
a(n) ~ 4*5^(n-1/2)*sqrt(n)/sqrt(Pi).
(End)
a(n) = hypergeom([3/2, -n], [1], -4) = hypergeom([3/2, n+1], [1], 4/5)/(5*sqrt(5)). - Vladimir Reshetnikov, Apr 25 2016
E.g.f.: exp(3*x) * ((1 + 4*x) * BesselI(0,2*x) + 4 * x * BesselI(1,2*x)). - Ilya Gutkovskiy, Nov 19 2021
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k). (End)

A163209 Catalan pseudoprimes: odd composite integers n=2*m+1 satisfying A000108(m) == (-1)^m * 2 (mod n).

Original entry on oeis.org

5907, 1194649, 12327121
Offset: 1

Views

Author

Peter Luschny, Jul 24 2009

Keywords

Comments

Also, Wilson spoilers: composite n which divide A056040(n-1) - (-1)^floor(n/2). For the factorial function, a Wilson spoiler is a composite n that divides (n-1)! + (-1). Lagrange proved that no such n exists. For the swinging factorial (A056040), the situation is different.
Also, composite odd integers n=2*m+1 such that A000984(m) == (-1)^m (mod n).
Contains squares of A001220. In particular, a(2) = A001220(1)^2 = 1093^2 = 1194649 = A001567(274) and a(3) = A001220(2)^2 = 3511^2 = 12327121 = A001567(824).
See the Vardi reference for a binomial setup.
Aebi and Cairns 2008, page 9: a(4) either has more than 2 factors or is > 10^10. - Dana Jacobsen, May 27 2015
a(4) > 10^10. - Dana Jacobsen, Mar 03 2018

References

  • I. Vardi, Computational Recreations in Mathematica, 1991, p. 66.

Programs

Extensions

a(1) = 5907 = 3*11*179 was found by S. Skiena
Typo corrected Peter Luschny, Jul 25 2009
Edited by Max Alekseyev, Jun 22 2012

A212303 a(n) = n!/([(n-1)/2]!*[(n+1)/2]!) for n>0, a(0)=0, and where [ ] = floor.

Original entry on oeis.org

0, 1, 2, 3, 12, 10, 60, 35, 280, 126, 1260, 462, 5544, 1716, 24024, 6435, 102960, 24310, 437580, 92378, 1847560, 352716, 7759752, 1352078, 32449872, 5200300, 135207800, 20058300, 561632400, 77558760, 2326762800, 300540195, 9617286240, 1166803110, 39671305740
Offset: 0

Views

Author

Peter Luschny, Oct 24 2013

Keywords

Comments

a(n) + A056040(n) = A189911(n), the row sums of the extended Catalan triangle A189231.

Crossrefs

Programs

  • Maple
    A212303 := proc(n) if n mod 2 = 0 then n*binomial(n, iquo(n,2))/2 else binomial(n+1, iquo(n,2)+1)/2 fi end: seq(A212303(i), i=0..36);
  • Mathematica
    a[n_?EvenQ] := n*Binomial[n, n/2]/2; a[n_?OddQ] := Binomial[n+1, Quotient[n, 2]+1]/2; Table[a[n], {n, 0, 36}]  (* Jean-François Alcover, Feb 05 2014 *)
    nxt[{n_,a_}]:={n+1,If[OddQ[n],a(n+1),(4a(n+1))/(n(n+2))]}; Join[{0}, Transpose[ NestList[ nxt,{1,1},40]][[2]]] (* Harvey P. Dale, Dec 20 2014 *)
  • Sage
    def A212303():
        yield 0
        r, n = 1, 1
        while True:
            yield r
            n += 1
            r *= n if is_even(n) else 4*n/((n-1)*(n+1))
    a = A212303(); [next(a) for i in range(36)]

Formula

E.g.f.: (1+x)*BesselI(1, 2*x).
O.g.f.: -((4*x^2-1)^(3/2)+I-(4*I)*x^2+(4*I)*x^3)/(2*x*(4*x^2-1)^(3/2)).
Recurrence: a(n) = n if n < 2 else a(n) = a(n-1)*n if n is even else a(n-1)*n*4/((n-1)*(n+1)).
a(2*n) = n*C(2*n, n) (A005430); a(2*n+1) = C(2*n+1, n+1) (A001700).
a(n) = n$*floor((n+1)/2)^((-1)^n), where n$ is the swinging factorial A056040.
a(n) = Sum_{k=0..n} A189231(n, 2*k+1).
Sum_{n>=1} 1/a(n) = 2/3 + (7/27)*sqrt(3)*Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2/3 + Pi/(9*sqrt(3)). - Amiram Eldar, Aug 20 2022

A274888 Triangle read by rows: the q-analog of the swinging factorial which is defined as q-multinomial([floor(n/2), n mod 2, floor(n/2)]).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 4, 5, 6, 5, 4, 2, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 2, 4, 7, 12, 17, 24, 31, 39, 45, 51, 54, 56, 54, 51, 45, 39, 31, 24, 17, 12, 7, 4, 2, 1
Offset: 0

Views

Author

Peter Luschny, Jul 19 2016

Keywords

Comments

The q-swing_factorial(n) is a univariate polynomial over the integers with degree floor((n+1)/2)^2 + ((n+1) mod 2) and at least floor(n/2) irreducible factors.
Evaluated at q=1 q-swing_factorial(n) gives the swinging factorial A056040(n).
Combinatorial interpretation: The definition of an orbital system is given in A232500 and in the link 'Orbitals'. The number of orbitals over n sectors is counted by the swinging factorial.
The major index of an orbital is the sum of the positions of steps which are immediately followed by a step with strictly smaller value. This statistic is an extension of the major index statistic given in A063746 which reappears in the even numbered rows here. This reflects the fact that the swinging factorial can be seen as an extension of the central binomial. As in the case of the central binomial also in the case of the swinging factorial the major index coincides with its q-analog.

Examples

			The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q^2 + 1) * (q^2 + q + 1)
[5] (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q + 1) * (q^2 - q + 1) * (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials start:
[n] [k=0,1,2,...] [row sum]
[0] [1] [1]
[1] [1] [1]
[2] [1, 1] [2]
[3] [1, 2, 2, 1] [6]
[4] [1, 1, 2, 1, 1] [6]
[5] [1, 2, 4, 5, 6, 5, 4, 2, 1] [30]
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] [20]
[7] [1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1] [140]
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] [70]
T(5, 4) = 6 because the 2 orbitals [-1,-1,1,1,0] and [-1,0,1,1,-1] have at position 4 and the 4 orbitals [0,-1,1,-1,1], [1,-1,0,-1,1], [1,-1,1,-1,0] and [1,0,1,-1,-1] at positions 1 and 3 a down step.
		

Crossrefs

Cf. A056040 (row sums), A274887 (q-factorial), A063746 (q-central_binomial).
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Maple
    QSwingFactorial_coeffs := proc(n) local P,a,b;
    a := mul((p^(n-i)-1)/(p^(i+1)-1),i=0..iquo(n,2)-1);
    b := ((p^(iquo(n,2)+1)-1)/(p-1))^((1-(-1)^n)/2);
    P := simplify(a*b); seq(coeff(P,p,j),j=0..degree(P)) end:
    for n from 0 to 9 do print(QSwingFactorial_coeffs(n)) od;
    # Alternatively (recursive):
    with(QDifferenceEquations):
    QSwingRec := proc(n,q) local r; if n = 0 then return 1 fi:
    if irem(n,2) = 0 then r := (1+q^(n/2))/QBrackets(n/2,q)
    else r := QBrackets(n,q) fi; r*QSwingRec(n-1,q) end:
    Trow := proc(n) expand(QSimplify(QSwingRec(n,q)));
    seq(coeff(%,q,j),j=0..degree(%)) end: seq(Trow(n),n=0..10);
  • Mathematica
    p[n_] := QFactorial[n, q] / QFactorial[Quotient[n, 2], q]^2
    Table[CoefficientList[p[n] // FunctionExpand, q], {n,0,9}] // Flatten
  • Sage
    from sage.combinat.q_analogues import q_factorial
    def q_swing_factorial(n, q=None):
        return q_factorial(n)//q_factorial(n//2)^2
    for n in (0..8): print(q_swing_factorial(n).list())
    
  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def orbital_major_index(n):
        S = [0]*(((n+1)//2)^2 + ((n+1) % 2))
        for u in unit_orbitals(n):
            L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
            # i+1 because u is 0-based whereas convention assumes 1-base.
            S[sum(L)] += 1
        return S
    for n in (0..9): print(orbital_major_index(n))

Formula

q_swing_factorial(n) = q_factorial(n)/q_factorial(floor(n/2))^2.
q_swing_factorial(n) = q_binomial(n-eta(n),floor((n-eta(n))/2))*q_int(n)^eta(n) with eta(n) = (1-(-1)^n)/2.
Recurrence: q_swing_factorial(0,q) = 1 and for n>0 q_swing_factorial(n,q) = r*q_swing_factorial(n-1,q) with r = (1+q^(n/2))/[n/2;q] if n is even else r = [n;q]. Here [a;q] are the q_brackets.
The generating polynomial for row n is P_n(p) = ((p^(floor(n/2)+1)-1)/(p-1))^((1-(-1)^n)/2)*Product_{i=0..floor(n/2)-1}((p^(n-i)-1)/(p^(i+1)-1)).

A327493 a(n) = 2^A327492(n).

Original entry on oeis.org

1, 4, 8, 32, 128, 512, 1024, 4096, 32768, 131072, 262144, 1048576, 4194304, 16777216, 33554432, 134217728, 2147483648, 8589934592, 17179869184, 68719476736, 274877906944, 1099511627776, 2199023255552, 8796093022208, 70368744177664, 281474976710656, 562949953421312
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Crossrefs

Programs

  • Julia
    bitcount(n) = sum(digits(n, base = 2))
    A327493(n) = 2^(2n - bitcount(n) + mod(n, 2))
    [A327493(n) for n in 0:26] |> println # Peter Luschny, Oct 03 2019
  • Maple
    A327493 := n -> 2^(A327492_list(n+1)[n+1]):
    seq(A327493(n), n = 0..26);
  • PARI
    seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[n+1] = a[n] * 2^if(n%4, n%2 + 1, valuation(n,2))); a} \\ Andrew Howroyd, Sep 28 2019
    
  • PARI
    a(n)={ denominator(sum(j=0, n, j!/(2^j*(j\2)!)^2)) } \\ Andrew Howroyd, Sep 28 2019
    

Formula

a(n) = denominator(b(n)) where b(n) = n!/(2^n*floor(n/2)!)^2 is the normalized swinging factorial (A056040).
Previous Showing 81-90 of 146 results. Next