cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A033577 a(n) = (3*n+1) * (4*n+1).

Original entry on oeis.org

1, 20, 63, 130, 221, 336, 475, 638, 825, 1036, 1271, 1530, 1813, 2120, 2451, 2806, 3185, 3588, 4015, 4466, 4941, 5440, 5963, 6510, 7081, 7676, 8295, 8938, 9605, 10296, 11011, 11750, 12513, 13300, 14111, 14946, 15805, 16688, 17595, 18526, 19481, 20460, 21463
Offset: 0

Views

Author

Keywords

Comments

Also the 120º spoke (or ray) of a hexagonal spiral of Ulam. - Robert G. Wilson v, Jul 06 2014
If two independent real random variables x and y are distributed according to the same exponential distribution with pdf(x) = lambda * exp(-lambda * x) for some lambda > 0, then the probability that 3 <= x/(n*y) < 4 is given by n/a(n) for n>1. - Andres Cicuttin, Dec 11 2016

Examples

			See A056105 example section for hexagonal spiral of Ulam diagram. - _Robert G. Wilson v_, Jul 06 2014
		

Crossrefs

Programs

Formula

From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1 + 17*x + 6*x^2)/(1-x)^3. (End)
E.g.f.: (1 + 19*x + 12*x^2)*exp(x). - G. C. Greubel, Oct 12 2019

Extensions

More terms from Wesley Ivan Hurt, Jul 06 2014

A244813 The hexagonal spiral of Champernowne, read along the West (or 270-degree) ray.

Original entry on oeis.org

1, 5, 2, 0, 1, 5, 2, 2, 3, 1, 4, 1, 1, 1, 7, 2, 9, 1, 3, 0, 3, 4, 2, 3, 6, 7, 1, 7, 3, 7, 9, 0, 3, 2, 1, 2, 8, 3, 3, 4, 7, 8, 6, 6, 0, 7, 8, 9, 7, 0, 1, 2, 8, 7, 4, 5, 3, 8, 8, 9, 2, 3, 1, 2, 5, 2, 5, 6, 2, 5, 9, 0, 3, 2, 4, 5, 8, 3, 8, 9, 7, 8, 3, 4, 0, 7, 8, 9, 7, 0, 3, 5, 8, 7, 9, 0, 3, 8, 5, 6, 2, 3, 1, 2, 5
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			see A244807 example section for its diagram.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 3n^2 - 5n + 3 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

(3n^2 - 5n + 3)th almost natural number (A033307), Also see formula section of A056105.

A096777 a(n) = a(n-1) + Sum_{k=1..n-1}(a(k) mod 2), a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 92, 103, 115, 128, 141, 155, 170, 185, 201, 218, 235, 253, 272, 291, 311, 332, 353, 375, 398, 421, 445, 470, 495, 521, 548, 575, 603, 632, 661, 691, 722, 753, 785, 818, 851, 885, 920, 955, 991, 1028
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 09 2004

Keywords

Comments

a(n) = a(n-1) + (number of odd terms so far in the sequence). Example: 15 is 11 + 4 odd terms so far in the sequence (they are 1,3,5,11). See A007980 for the same construction with even integers. - Eric Angelini, Aug 05 2007
A016789 and A032766 give positions where even and odd terms occur; a(3*n)=A056106(n); a(3*n-1)=A077588(n); a(3*n-2)=A056108(n). - Reinhard Zumkeller, Dec 29 2007

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 15*x^7 + 20*x^8 + ... - _Michael Somos_, Apr 18 2020
		

Crossrefs

Programs

Formula

a(n+1) - a(n) = A004396(n).
a(n) = floor(n/3) * (3*floor(n/3) + 2*(n mod 3) - 1) + n mod 3 + 0^(n mod 3). - Reinhard Zumkeller, Dec 29 2007
a(n) = floor((n-2)^2/3) + n. - Christopher Hunt Gribble, Mar 06 2014
G.f.: -x*(x^4+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Mar 07 2014
Euler transform of finite sequence [2, 0, 1, 1, 0, 0, 0, -1]. - Michael Somos, Apr 18 2020
a(n) = (10 + 3*n*(n - 1) - A061347(n+1))/9. - Stefano Spezia, Sep 22 2022

A247608 a(n) = Sum_{k=0..3} binomial(6,k)*binomial(n,k).

Original entry on oeis.org

1, 7, 28, 84, 195, 381, 662, 1058, 1589, 2275, 3136, 4192, 5463, 6969, 8730, 10766, 13097, 15743, 18724, 22060, 25771, 29877, 34398, 39354, 44765, 50651, 57032, 63928, 71359, 79345, 87906, 97062, 106833, 117239, 128300, 140036, 152467, 165613, 179494
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(6+31*n-15*n^2+20*n^3)/6: n in [0..40]];
    
  • Magma
    [1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3): n in [0..40]];
    
  • Magma
    I:=[1, 7, 28, 84]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[(6 + 31 n - 15 n^2 + 20 n^3)/6, {n, 0, 50}] (* or *) CoefficientList[Series[(1 + 3 x + 6 x^2 + 10 x^3)/(1-x)^4,{x, 0, 50}], x]
  • PARI
    Vec((1+3*x+6*x^2+10*x^3)/(1-x)^4 + O (x^50)) \\ Michel Marcus, Sep 22 2014
    
  • Sage
    m=3; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1+3*x+6*x^2+10*x^3)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = (6+31*n-15*n^2+20*n^3)/6.
a(n) = 1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3).

A244805 The 240-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 16, 55, 118, 205, 316, 451, 610, 793, 1000, 1231, 1486, 1765, 2068, 2395, 2746, 3121, 3520, 3943, 4390, 4861, 5356, 5875, 6418, 6985, 7576, 8191, 8830, 9493, 10180, 10891, 11626, 12385, 13168, 13975, 14806, 15661, 16540, 17443, 18370, 19321, 20296, 21295, 22318, 23365, 24436, 25531
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Numbers of the form 1 + k/2 + k^2/3 (associated k are in A008588). - Bruno Berselli, Jan 20 2017

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Cf. A281333 (1 + floor(n/2) + floor(n^2/3)).

Programs

  • Magma
    [12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244805:=n->12*n^2 - 21*n + 10: seq(A244805(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)

A244806 The 180-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 18, 59, 124, 213, 326, 463, 624, 809, 1018, 1251, 1508, 1789, 2094, 2423, 2776, 3153, 3554, 3979, 4428, 4901, 5398, 5919, 6464, 7033, 7626, 8243, 8884, 9549, 10238, 10951, 11688, 12449, 13234, 14043, 14876, 15733, 16614, 17519, 18448, 19401, 20378, 21379, 22404, 23453, 24526, 25623
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2 - 19*n + 8 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244806:=n->12*n^2 - 19*n + 8: seq(A244806(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 19n + 8; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 19*n + 8) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 15*x + 8*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 19*n + 8.
See A056105 example section for its formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 15*x + 8*x^2) / (1 - x)^3.
(End)

A244802 The 60-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 10, 43, 100, 181, 286, 415, 568, 745, 946, 1171, 1420, 1693, 1990, 2311, 2656, 3025, 3418, 3835, 4276, 4741, 5230, 5743, 6280, 6841, 7426, 8035, 8668, 9325, 10006, 10711, 11440, 12193, 12970, 13771, 14596, 15445, 16318, 17215, 18136, 19081, 20050, 21043, 22060, 23101, 24166, 25255
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for a diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2-27*n+16 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244802:=n->12*n^2-27*n+16: seq(A244802(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 27n + 16; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 27*n + 16) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 7*x + 16*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for a formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 7*x + 16*x^2) / (1 - x)^3.
(End)

A244803 The 360 degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 12, 47, 106, 189, 296, 427, 582, 761, 964, 1191, 1442, 1717, 2016, 2339, 2686, 3057, 3452, 3871, 4314, 4781, 5272, 5787, 6326, 6889, 7476, 8087, 8722, 9381, 10064, 10771, 11502, 12257, 13036, 13839, 14666, 15517, 16392, 17291, 18214, 19161, 20132, 21127, 22146, 23189, 24256, 25347
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for a diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2-25*n+14 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244803:=n->12*n^2-25*n+14: seq(A244803(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 25n + 14; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 25*n + 14) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 2*x)*((1 + 7*x) / (1 - x)^3) + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for a formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 2*x)*((1 + 7*x) / (1 - x)^3).
(End)

A244804 The 300-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 14, 51, 112, 197, 306, 439, 596, 777, 982, 1211, 1464, 1741, 2042, 2367, 2716, 3089, 3486, 3907, 4352, 4821, 5314, 5831, 6372, 6937, 7526, 8139, 8776, 9437, 10122, 10831, 11564, 12321, 13102, 13907, 14736, 15589, 16466, 17367, 18292, 19241, 20214, 21211, 22232, 23277, 24346, 25439
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Programs

  • Magma
    [ 12*n^2 - 23*n + 12 : n in [1..50] ]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244804:=n->12*n^2 - 23*n + 12: seq(A244804(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 23n + 12; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 23*n + 12) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 11*x + 12*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for its formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 11*x + 12*x^2) / (1 - x)^3.
(End)

A156140 Accumulation of Stern's diatomic series: a(0)=-1, a(1)=0, and a(n+1) = (2e(n)+1)*a(n) - a(n-1) for n > 1, where e(n) is the highest power of 2 dividing n.

Original entry on oeis.org

-1, 0, 1, 3, 2, 7, 5, 8, 3, 13, 10, 17, 7, 18, 11, 15, 4, 21, 17, 30, 13, 35, 22, 31, 9, 32, 23, 37, 14, 33, 19, 24, 5, 31, 26, 47, 21, 58, 37, 53, 16, 59, 43, 70, 27, 65, 38, 49, 11, 50, 39, 67, 28, 73, 45, 62, 17, 57, 40, 63, 23, 52, 29, 35, 6, 43, 37, 68, 31, 87, 56, 81, 25, 94, 69
Offset: 0

Views

Author

Arie Werksma (Werksma(AT)Tiscali.nl), Feb 04 2009

Keywords

Crossrefs

From Yosu Yurramendi, Mar 09 2018: (Start)
a(2^m + 0) = A000027(m), m >= 0.
a(2^m + 1) = A002061(m+2), m >= 1.
a(2^m + 2) = A002522(m), m >= 2.
a(2^m + 3) = A033816(m-1), m >= 2.
a(2^m + 4) = A002061(m), m >= 2.
a(2^m + 5) = A141631(m), m >= 3.
a(2^m + 6) = A084849(m-1), m >= 3.
a(2^m + 7) = A056108(m-1), m >= 3.
a(2^m + 8) = A000290(m-1), m >= 3.
a(2^m + 9) = A185950(m-1), m >= 4.
a(2^m + 10) = A144390(m-1), m >= 4.
a(2^m + 12) = A014106(m-2), m >= 4.
a(2^m + 16) = A028387(m-3), m >= 4.
a(2^m + 18) = A250657(m-4), m >= 5.
a(2^m + 20) = A140677(m-3), m >= 5.
a(2^m + 32) = A028872(m-2), m >= 5.
a(2^m - 1) = A005563(m-1), m >= 0.
a(2^m - 2) = A028387(m-2), m >= 2.
a(2^m - 3) = A033537(m-2), m >= 2.
a(2^m - 4) = A008865(m-1), m >= 3.
a(2^m - 7) = A140678(m-3), m >= 3.
a(2^m - 8) = A014209(m-3), m >= 4.
a(2^m - 16) = A028875(m-2), m >= 5.
a(2^m - 32) = A108195(m-5), m >= 6.
(End)

Programs

  • Maple
    A156140 := proc(n)
        option remember ;
        if n <= 1 then
            n-1 ;
        else
            (2*A007814(n-1)+1)*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A156140(n),n=0..80) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    Fold[Append[#1, (2 IntegerExponent[#2, 2] + 1) #1[[-1]] - #1[[-2]] ] &, {-1, 0}, Range[73]] (* Michael De Vlieger, Mar 09 2018 *)
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=-1; v[2]=0; for(k=1,n-1,v[k+2]=(2*valuation(k,2)+1)*v[k+1] - v[k]); v \\ Charles R Greathouse IV, Apr 05 2016
    
  • PARI
    fusc(n)=my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b
    a(n)=my(m=1,s,t); if(n==0, return(-1)); while(n%2==0, s+=fusc(n>>=1)); while(n>1, t=logint(n,2); n-=2^t; s+=m*fusc(n)*(t^2+t+1); m*=-t); m*(n-1) + s \\ Charles R Greathouse IV, Dec 13 2016
    
  • R
    a <- c(0,1)
    maxlevel <- 6 # by choice
    for(m in 1:maxlevel) {
      a[2^(m+1)] <- m + 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        a[2^r*(2*k+1)] <- a[2^r*(2*k)] + a[2^r*(2*k+2)]
    }}
    a
    # Yosu Yurramendi, May 08 2018

Formula

Let b(n) = A002487(n), Stern's diatomic series.
a(n+1)*b(n) - a(n)*b(n+1) = 1 for n >= 0.
a(2n+1) = a(n) + a(n+1) + b(n) + b(n+1) for n >= 0.
a(2n) = a(n) + b(n) for n >= 0.
a(2^n + k) = -n*a(k) + (n^2 + n + 1)*b(k) for 0 <= k <= 2^n.
b(2^n + k) = -a(k) + (n + 1)*b(k) for 0 <= k <= 2^n.
a(2^m + k) = b(2^m+k)*m + b(k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 09 2018
a(2^(m+1)+2^m+1) = 2*m+1, m >= 0. - Yosu Yurramendi, Mar 09 2018
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = m, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r = m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m.
(End)
Previous Showing 11-20 of 37 results. Next