cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A212428 a(n) = 18*n + A000217(n-1).

Original entry on oeis.org

0, 18, 37, 57, 78, 100, 123, 147, 172, 198, 225, 253, 282, 312, 343, 375, 408, 442, 477, 513, 550, 588, 627, 667, 708, 750, 793, 837, 882, 928, 975, 1023, 1072, 1122, 1173, 1225, 1278, 1332, 1387, 1443, 1500, 1558, 1617, 1677, 1738, 1800, 1863, 1927, 1992, 2058
Offset: 0

Views

Author

Jesse Han, May 16 2012

Keywords

Comments

Generalization: T(n,i) = A000217(i-1+n) - A000217(i-1) = i*n + A000217(n-1) (corrected by Zak Seidov, Jun 21 2012); in this case is i=18.
For i = 11..16, Milan Janjic observed that if we define f(n,b,i) = Sum_{k=0..n-b} binomial(n,k)*Stirling1(n-k,b)*Product_{j=0..k-1} (-i - j), then T(n-1,i) = -f(n,n-1,i) for n >= 1.

Crossrefs

Programs

  • Magma
    [n*(n+35)/2: n in [0..48]]; // Bruno Berselli, Jun 21 2012
    
  • Mathematica
    Table[-18 (18 - 1)/2 + (18 + n) (17 + n)/2, {n, 0, 100}]
    LinearRecurrence[{3,-3,1},{0,18,37},60] (* Harvey P. Dale, Jun 09 2024 *)
  • PARI
    a(n)=n*(n+35)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (17+n)*(18+n)/2 - 17*18/2 = 18*n + (n-1)*n/2 = n*(n+35)/2.
G.f.: x*(18-17*x)/(1-x)^3. - Bruno Berselli, Jun 21 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 10 2012
a(n) = 18*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(35)/(35*A002805(35)) = 54437269998109/229732925058000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/35 - 102126365345729/2527062175638000. (End)
E.g.f.: exp(x)*x*(36 + x)/2. - Elmo R. Oliveira, Dec 12 2024

A174183 a(n) is the period k such that binomial(m, n) (mod 10) = binomial(m + k, n) (mod 10).

Original entry on oeis.org

1, 10, 20, 60, 240, 1200, 7200, 50400, 403200, 3628800, 36288000, 399168000, 4790016000, 62270208000, 871782912000, 13076743680000, 209227898880000, 3556874280960000, 64023737057280000, 1216451004088320000
Offset: 0

Views

Author

Michel Lagneau, Mar 11 2010

Keywords

Comments

a(n) is the period (mod 10) of the numbers in each column n of Pascal's triangle.

Examples

			x(0)= 0.C(1,0)C(2,0)C(3,0) ... = 0.11111111111... and p(0)=1 ;
x(1)= 0.C(1,1)C(2,1)C(3,1) ... = 0.12345678901234... and p(1) = 10 ;
x(2)= 0.C(2,2)C(3,2)C(4,2) ... = 0.13605186556815063100 13605186556815063100... and p(2)=20.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Mathematica
    Join[{1},Array[10#!&,20]] (* Harvey P. Dale, Feb 18 2018 *)
  • Python
    from math import factorial
    def A174183(n): return 10*factorial(n) if n else 1 # Chai Wah Wu, Aug 07 2025

Formula

a(0)=1, and a(n) = 10 * n! for n >= 1.

Extensions

Additional comments, and errors in examples corrected by Michel Lagneau, May 07 2010

A209274 Table T(n,k) = n*(n+2^k-1)/2, n, k > 0 read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 9, 10, 16, 17, 15, 14, 15, 32, 33, 27, 22, 20, 21, 64, 65, 51, 38, 30, 27, 28, 128, 129, 99, 70, 50, 39, 35, 36, 256, 257, 195, 134, 90, 63, 49, 44, 45, 512, 513, 387, 262, 170, 111, 77, 60, 54, 55, 1024, 1025, 771, 518, 330, 207, 133, 92, 72, 65, 66
Offset: 1

Views

Author

Boris Putievskiy, Jan 15 2013

Keywords

Comments

Column number 1 A000217 n*(n+1)/2,
column number 2 A000096 n*(n+3)/2,
column number 3 A055999 n*(n+7)/2,
column number 4 A056121 n*(n+15)/2,
column number 5 A132758 n*(n+31)/2.
Row number 1 A000079 2^k,
row number 2 A000051 2^k + 1.

Examples

			The start of the sequence as table:
  1....2...4...8...16...32...64...
  3....5...9..17...33...65..129...
  6....9..15..27...51...99..195...
  10..14..22..38...70..134..262...
  15..20..30..50...90..170..330...
  21..27..39..63..111..207..399...
  28..35..49..77..133..245..469...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  2,3;
  4,5,6;
  8,9,9,10;
  16,17,15,14,15;
  32,33,27,22,20,21;
  64,65,51,38,30,27,28;
  . . .
Row number r contains r numbers.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := n - d[n]*(d[n] + 1)/2; c[n_] := (d[n]^2 + 3*d[n] + 4)/2 - n; d[n_] := Floor[(-1 + Sqrt[8*n - 7])/2]; a[n_] := b[n]*(b[n] + 2^c[n] - 1)/2; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jan 04 2018 *)
  • PARI
    a(n, k) = n*(n+2^k-1)/2
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 7 rows and 8 columns of table as follows */
    array(7, 8) \\ Felix Fröhlich, Jan 05 2018
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result = i*(i+2**j-1)/2
    

Formula

a(n) = A002260(n)*(A002260(n)+2^A004736(n)-1)/2.
a(n) = i*(i+2^j-1)/2,
where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
Previous Showing 11-14 of 14 results.