cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A099015 a(n) = Fib(n+1)*(2*Fib(n)^2 + Fib(n)*Fib(n-1) + Fib(n-1)^2).

Original entry on oeis.org

1, 2, 8, 33, 140, 592, 2509, 10626, 45016, 190685, 807764, 3421728, 14494697, 61400482, 260096680, 1101787113, 4667245276, 19770767984, 83750317589, 354772037730, 1502838469496, 6366125914117, 26967342128548
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,2)-element of A^n.

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)*(2*Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Mathematica
    LinearRecurrence[{3,6,-3,-1},{1,2,8,33},30] (* Harvey P. Dale, Nov 28 2015 *)
    CoefficientList[Series[(1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    a(n)=my(e=fibonacci(n-1),f=fibonacci(n));(e+f)*(2*f^2+f*e+e^2) \\ Charles R Greathouse IV, Jun 05 2011
    
  • PARI
    first(n) = Vec((1 - x - 4*x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 31 2017

Formula

G.f.: (1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)).
G.f.: (1-x-4*x^2)/(1-3*x-6*x^2+3*x^3+x^4).
a(n) = (3*Fib(3*n+1) + (-1)^n*Fib(n-3))/5.
a(n) = (2+sqrt(5))^n*(3/10 + 3*sqrt(5)/50) + (2-sqrt(5))^n*(3/10 - 3*sqrt(5)/50) + (-1)^n*((1/2 - sqrt(5)/2)^n*(1/5 + 2*sqrt(5)/25) + (1/5 - 2*sqrt(5)/25)*(1/2 + sqrt(5)/2)^n).

A216699 Digital root of cubes of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8, 1, 9, 1, 1, 8, 9, 8, 8
Offset: 0

Views

Author

Ravi Bhandari, Sep 15 2012

Keywords

Comments

This sequence repeats after every 8 terms, hence this is periodic with period 8.

Crossrefs

Programs

  • Mathematica
    Table[NestWhile[Total[IntegerDigits[#]] &, Fibonacci[n]^3, # > 9 &], {n, 0, 86}] (* T. D. Noe, Oct 15 2012 *)
    Join[{0},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{1, 1, 8, 9, 8, 8, 1, 9},86]] (* Ray Chandler, Aug 25 2015 *)

A220360 a(n) = Fibonacci(n-1) * Fibonacci(n+1) * Fibonacci(n+2).

Original entry on oeis.org

0, 6, 15, 80, 312, 1365, 5712, 24310, 102795, 435744, 1845360, 7817849, 33115680, 140282310, 594242103, 2517255280, 10663255848, 45170290605, 191344398960, 810547917686, 3433536019155, 14544692076096, 61612304191200, 260993909055025, 1105587940064832
Offset: 1

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type A have sides A066259(n+1), a(n+1), A066259(n+1), a(n+1), A066259(n+1), and opposite diagonals A056570(n+2), A056570(n+2), A220361(n+2), A056570(n+2), A056570(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Table[Fibonacci[n - 1]*Fibonacci[n + 1]*Fibonacci[n + 2], {n, 30}] (* T. D. Noe, Dec 13 2012 *)
    #[[1]]#[[3]]#[[4]]&/@Partition[Fibonacci[Range[0,30]],4,1] (* Harvey P. Dale, Apr 08 2022 *)
  • PARI
    a(n) = fibonacci(n-1) * fibonacci(n+1) * fibonacci(n+2); \\ Michel Marcus, Mar 26 2016
    
  • PARI
    x='x+O('x^99); concat(0, Vec((6*x-3*x^2-x^3)/(1-3*x-6*x^2+3*x^3+x^4))) \\ Altug Alkan, Mar 26 2016

Formula

G.f.: (6*x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4); a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). [Ron Knott, Jun 27 2013]
Sum {n >= 2} 1/a(n) = 1/4. - Peter Bala, Nov 30 2013
a(n) = 4*(-1)^n*F(n-1)/5 + (-1)^n*F(n) + F(3*n+2)/5 with F=A000045. - Ehren Metcalfe, Mar 26 2016

A220361 a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n-2).

Original entry on oeis.org

1, 7, 28, 123, 515, 2192, 9269, 39291, 166396, 704935, 2986039, 12649248, 53582777, 226980767, 961505180, 4073002563, 17253513691, 73087060144, 309601749709, 1311494066355, 5555578003196, 23533806098447, 99690802365743, 422297015611968, 1788878864731825
Offset: 2

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons. Type A have sides A066259(n+1), A220360(n+1), A066259(n+1), A220360(n+1), A066259(n+1), and opposite diagonals A056570(n+2), A056570(n+2), a(n+2), A056570(n+2), A056570(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Crossrefs

Programs

  • Maple
    with(combinat): A220361:=n->fibonacci(n)^3+(-1)^n*fibonacci(n-2): seq(A220361(n), n=2..30); # Wesley Ivan Hurt, Apr 26 2017
  • Mathematica
    Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n - 2], {n, 2, 30}] (* T. D. Noe, Dec 13 2012 *)
    LinearRecurrence[{3,6,-3,-1},{1,7,28,123},30] (* Harvey P. Dale, Jul 13 2021 *)
  • PARI
    Vec(x^2*(x^2+4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
    
  • PARI
    a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n-2) \\ Charles R Greathouse IV, Feb 14 2017

Formula

a(n) = 3*a(n-1)+6*a(n-2)-3*a(n-3)-a(n-4). G.f.: x^2*(x^2+4*x+1) / ((x^2-x-1)*(x^2+4*x-1)). - Colin Barker, Sep 23 2014
a(n) = F(n-1)*(F(n+1)*F(n) - (-1)^n). - Greg Dresden, Sep 04 2025

A220363 a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n+2).

Original entry on oeis.org

1, -1, 4, 3, 35, 112, 533, 2163, 9316, 39215, 166519, 704736, 2986361, 12648727, 53583620, 226979403, 961507387, 4072998992, 17253519469, 73087050795, 309601764836, 1311494041879, 5555578042799, 23533806034368, 99690802469425, 422297015444207
Offset: 0

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type B have sides A056570(n+2), A056570(n+2), a(n+2), A056570(n+2), A056570(n+2), and opposite diagonals A220362(n+2), A066258(n+2), A066258(n+2), A066258(n+2), A220362(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Programs

  • Mathematica
    Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n + 2], {n, 0, 30}] (* T. D. Noe, Dec 13 2012 *)
    LinearRecurrence[{3,6,-3,-1},{1,-1,4,3},30] (* Harvey P. Dale, Mar 19 2022 *)
  • PARI
    Vec((x^2-4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
    
  • PARI
    a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n+2) \\ Charles R Greathouse IV, Feb 14 2017

Formula

a(n) = 3*a(n-1)+6*a(n-2)-3*a(n-3)-a(n-4). G.f.: (x^2-4*x+1) / ((x^2-x-1)*(x^2+4*x-1)). - Colin Barker, Sep 23 2014

A244309 a(n) = F(n)^3 - F(n)^2, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

0, 0, 0, 4, 18, 100, 448, 2028, 8820, 38148, 163350, 697048, 2965248, 12595048, 53440504, 226608900, 960530634, 4070452764, 17246835648, 73069580980, 309555981900, 1311374255620, 5555264316910, 23532984885744, 99688652356608, 422291386890000
Offset: 0

Views

Author

Colin Barker, Jun 25 2014

Keywords

Examples

			a(4) is 18 because F(4)^3 - F(4)^2 = 3^3 - 3^2 = 18.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)^3 - Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
  • Mathematica
    CoefficientList[Series[2 x^3 (x^2 - x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
    Table[#^3 - #^2 &@ Fibonacci@ n, {n, 0, 25}] (* Michael De Vlieger, Mar 27 2016 *)
    LinearRecurrence[{5,2,-22,-4,14,-1,-1},{0,0,0,4,18,100,448},30] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    vector(50, n, fibonacci(n-1)^3-fibonacci(n-1)^2)
    

Formula

G.f.: 2*x^3*(x^2-x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000045(n)). - Michel Marcus, Jun 25 2014
a(n) = (F(3*n) - 3*(-1)^n*F(n))/5 - (L(2*n) - 2*(-1)^n)/5, where F=A000045 and L=A000032. - Ehren Metcalfe, Mar 26 2016

A292278 a(n) = (Fibonacci(3*n-1) + 1)/2 for n >= 1.

Original entry on oeis.org

1, 3, 11, 45, 189, 799, 3383, 14329, 60697, 257115, 1089155, 4613733, 19544085, 82790071, 350704367, 1485607537, 6293134513, 26658145587, 112925716859, 478361013021, 2026369768941, 8583840088783, 36361730124071, 154030760585065, 652484772464329
Offset: 1

Views

Author

Vincenzo Librandi, Sep 13 2017

Keywords

Comments

Problem B-1211 proposed by Hideyuki Ohtsuka (see Links section): For n >= 1, prove that Fibonacci(n-1)^3 + Sum_{k=1..n} Fibonacci(k)^3 = (Fibonacci(3*n-1) + 1)/2.
Proof. Let F(n-1)^3 = (F(3*n-3) + 3*(-1)^n*F(n-1))/5 (see Ralf Stephan's formula in A056570) and Sum_{k=1..n} F(k)^3 = (F(3*n+2) - 6*(-1)^(n)*F(n-1) + 5)/10 (see Benjamin & Timothy's formula in A005968), where F=A000045, n>0. Therefore, (F(3*n-3) + 3*(-1)^n*F(n-1))/5 + (F(3*n+2) - 6*(-1)^(n)*F(n-1) + 5)/10 = (2*F(3*n-3) + F(3*n+2) + 5)/10 = (2*(F(3*n-1) - F(3*n-2)) + (3*F(3*n-1) + 2*F(3*n-2)) + 5)/10 = (5*F(3*n-1) + 5)/10 = a(n). - Bruno Berselli, Sep 14 2017

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n-1)+1)/2: n in [1..30]];
    
  • Mathematica
    Table[(Fibonacci[3 n - 1] + 1) / 2, {n, 40}]
    LinearRecurrence[{5,-3,-1},{1,3,11},30] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    a(n) = (fibonacci(3*n-1)+1)/2; \\ Altug Alkan, Sep 13 2017

Formula

G.f.: x*(1 - 2*x - x^2)/((1 - x)*(1 - 4*x -x^2)).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3).

Extensions

Edited by Bruno Berselli, Sep 14 2017

A056587 Tenth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 1024, 59049, 9765625, 1073741824, 137858491849, 16679880978201, 2064377754059776, 253295162119140625, 31181719929966183601, 3833759992447475122176, 471584161164422542970449
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^10, F(n)=A000045(n).
G.f.: x*p(10, x)/q(10, x) with p(10, x) := sum_{m=0..9} A056588(9, m)*x^m = (1-x)*(1 - 87*x - 4047*x^2 + 42186*x^3 + 205690*x^4 + 42186*x^5 - 4047*x^6 - 87*x^7 + x^8) and q(10, x) := sum_{m=0..11} A055870(11, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)*(1 + 47*x + x^2)*(1 - 123*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..11} A055870(11, m)*a(n-m) = 0, n >= 11; inputs: a(n), n=0..10. a(n) = 89*a(n-1) + 4895*a(n-2) - 83215*a(n-3) - 582505*a(n-4) + 1514513*a(n-5) + 1514513*a(n-6) - 582505*a(n-7) -83215*a(n-8) + 4895*a(n-9) + 89*a(n-10) - a(n-11).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001

A133054 Cubes of Motzkin numbers.

Original entry on oeis.org

1, 1, 8, 64, 729, 9261, 132651, 2048383, 33698267, 582182875, 10474708672, 194910229592, 3731808877831, 73218245857875, 1467320155924104, 29956212068269248, 621670415400598563, 13090510375656917139, 279262277830549534968, 6027856524470650538304
Offset: 0

Views

Author

Omar E. Pol, Oct 30 2007

Keywords

Crossrefs

Motzkin numbers: A001006.

Programs

  • Maple
    a1006:= gfun:-rectoproc({(-3*x-6)*a(x+1)+(-2*x-7)*a(x+2)+(x+5)*a(x+3), a(0) = 1, a(1) = 1, a(2) = 2},a(x),remember):
    map(a1006^3, [$0..60]); # Robert Israel, Oct 03 2017
  • Mathematica
    CoefficientList[Series[(1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2), {x, 0, 50}], x]^3 (* G. C. Greubel, Oct 03 2017 *)

Formula

a(n) = A001006(n)^3.

A215040 a(n) = F(2*n+1)^3, n>=0, with F = A000045 (Fibonacci).

Original entry on oeis.org

1, 8, 125, 2197, 39304, 704969, 12649337, 226981000, 4073003173, 73087061741, 1311494070536, 23533806109393, 422297015640625, 7577812474746632, 135978327528030989, 2440032083025183109, 43784599166913148552, 785682752921379769625, 14098504953417839657513
Offset: 0

Views

Author

Wolfdieter Lang, Aug 10 2012

Keywords

Comments

Bisection (odd part) of A056570. From this follows the o.g.f., and its partial fraction decomposition leads to the explicit formula given below. For the computation see A215039 for a comment on Chebyshev's S-polynomials.

Crossrefs

Cf. A000045, A056570, A163200 (partial sums).

Programs

  • Mathematica
    Fibonacci[2*Range[0,20]+1]^3 (* Harvey P. Dale, Jan 24 2013 *)

Formula

a(n) = F(2*n+1)^3, n>=0, with F=A000045.
O.g.f.: (1-x)*(1-12*x+x^2)/((1-3*x+x^2)*(1-18*x+x^2)) (from the bisection (odd part) of A056570).
a(n) = (12*F(2*n+1) + F(6*(n+1)) - F(6*n))/20, n>=0.
a(n) = 1 + (4*Sum_{k=1..n} F(6*k) + 3*Sum_{k=1..n} F(2*k)) / 5 (Davenport, 2024). - Amiram Eldar, Aug 29 2024
Previous Showing 21-30 of 33 results. Next