cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A211655 Down-sortable primes: Primes that are also primes after digits are sorted into decreasing order.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 31, 37, 41, 43, 53, 61, 71, 73, 79, 83, 97, 113, 131, 149, 157, 163, 167, 179, 181, 191, 197, 199, 211, 241, 251, 281, 311, 313, 331, 337, 347, 359, 373, 389, 419, 421, 431, 433, 443, 461, 463, 491, 521, 541, 563, 571, 593, 613, 617, 631, 641, 643, 653
Offset: 1

Views

Author

Francis J. McDonnell, Apr 17 2012

Keywords

Comments

All 1- and 2-digit reversible primes (A007500) are trivially in this sequence. No primes from A056709 are in this sequence. Clearly all absolute primes (A003459) are sortable primes but not all sortable primes are absolute primes. - Alonso del Arte, Oct 08 2013

Examples

			131 is prime and after sorting its digits into nonincreasing order we obtain 311, which is prime.
163 is in the sequence because its digits sorted in decreasing order give 631, which is prime. (Note that this is not a reversible prime, since 361 = 19^2.)
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]], PrimeQ[FromDigits[-Sort[-IntegerDigits[#]]]] &] (* T. D. Noe, Apr 17 2012 *)

A256227 Naught-y numbers (A011540) that after removing all zeros become zeroless primes (A038618).

Original entry on oeis.org

20, 30, 50, 70, 101, 103, 107, 109, 110, 130, 170, 190, 200, 203, 209, 230, 290, 300, 301, 307, 310, 370, 401, 403, 407, 410, 430, 470, 500, 503, 509, 530, 590, 601, 607, 610, 670, 700, 701, 703, 709, 710, 730, 790, 803, 809, 830, 890, 907, 970, 1001, 1003, 1007, 1009, 1010, 1013, 1027, 1030
Offset: 1

Views

Author

Keywords

Crossrefs

A256186 is the intersection of this sequence with A000040.

Programs

  • Maple
    N:= 4: # to produce all terms with <= N digits
    ZLO:= proc(d) # produce set of d-digit odd zeroless numbers
           option remember;
           if d = 1 then {1,3,5,7,9}
           else
             map(t -> seq(t+x*10^(d-1),x=1..9), ZLO(d-1))
           fi
    end proc:
    addzeros:= proc(x,d) # d-digit numbers formed by inserting 0's into x
            local L,n,R;
          L:= convert(x,base,10);
          n:= nops(L);
          R:= map(t -> [op(t),d], combinat[choose](d-1,n-1));
          seq(add(L[i]*10^(r[i]-1),i=1..n), r = R);
        end proc:
    Z[1]:= {2,3,5,7}:
    for i from 2 to N-1 do Z[i]:= select(isprime,ZLO(i)) od:
    `union`(seq(seq(map(addzeros,Z[i],d), i=1..d-1),d=2..N));
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Mar 19 2015
  • Mathematica
    ss={};Do[id=IntegerDigits[p];If[Min[id]<1&&PrimeQ[FromDigits[Delete[id,Position[id,0]]]],ss={ss,p}],{p,20,2000}];Flatten[ss]
    Select[Range[1200],DigitCount[#,10,0]>0&&PrimeQ[FromDigits[DeleteCases[ IntegerDigits[ #],0]]]&] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    is(n)=my(d=digits(n),e=select(x->x,d)); #e<#d && isprime(fromdigits(e)) \\ Charles R Greathouse IV, Mar 19 2015

A159613 Palindromic primes with multiplicative persistence value 1.

Original entry on oeis.org

11, 101, 131, 151, 181, 191, 313, 10301, 10501, 10601, 11311, 11411, 16061, 30103, 30203, 30403, 30703, 30803, 31013, 35053, 38083, 70207, 70507, 70607, 73037, 74047, 90709, 91019, 94049, 1003001, 1008001, 1022201, 1028201, 1035301
Offset: 1

Views

Author

Lekraj Beedassy, Apr 17 2009

Keywords

Crossrefs

Cf. A046501.
Cf. A056709. - R. J. Mathar, Apr 21 2009

Programs

  • Maple
    isA002113 := proc(n) local dgs,i ; dgs := convert(n,base,10) ; for i from 1 to nops(dgs)/2 do if op(i,dgs) <> op(-i,dgs) then RETURN(false): fi; od: RETURN(true) ; end: ndigs := proc(n) max(1, ilog10(n)+1) ; end: A031346 := proc(n) local p,nred; p := 0 ; nred := n ; while ndigs(nred) > 1 do nred := mul(d, d=convert(nred,base,10) ) ; p := p+1 ; od: p ; end: isA159613 := proc(n) RETURN(isprime(n) and isA002113(n) and A031346(n) = 1) ; end: for n from 1 to 100000 do p := ithprime(n) ; if isA159613(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Apr 21 2009
  • Mathematica
    palpQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn] && Length[ NestWhileList[Times@@IntegerDigits[#]&,n,#>9&]]==2]; Select[Prime[ Range[82000]],palpQ] (* Harvey P. Dale, Dec 16 2011 *)

Formula

A002385 INTERSECT A046501. - R. J. Mathar, Apr 21 2009

Extensions

Extended by R. J. Mathar, Apr 21 2009

A243825 Numbers n such that every divisor greater than 1 contains the digit 0.

Original entry on oeis.org

101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901, 1907, 2003, 2011, 2017, 2027, 2029
Offset: 1

Views

Author

Barbara W. Waddell and Robert G. Wilson v, Jun 11 2014

Keywords

Comments

This is an example of a composite number in the sequence which demonstrates that A056709 is a proper subsequence. - R. J. Mathar, Jun 13 2014

Examples

			The divisors of 10201 are {1, 101 & 10201}. Except for 1 each has a 0 in its decimal expansion.
		

Crossrefs

Supersequence of A056709 (primes) and A243819 (composites).

Programs

  • Magma
    [m:m in [2..2100] |  #[d:d in Divisors(m)|0 in Intseq(d)] eq #Divisors(m)-1]; // Marius A. Burtea, Nov 08 2019
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 2030], fQ[#, 0] &]

A267277 Zeroless primes p such that p*(product of digits of p)+(sum of digits of p) is also prime.

Original entry on oeis.org

11, 13, 17, 19, 31, 37, 43, 47, 61, 73, 79, 83, 223, 227, 263, 281, 283, 463, 643, 683, 821, 827, 881, 1117, 1231, 1259, 1291, 1321, 1361, 1367, 1433, 1471, 1543, 1567, 1583, 1597, 1619, 1637, 1657, 1699, 1723, 1741, 1753, 1777, 1933, 1951, 1973
Offset: 1

Views

Author

Emre APARI, Jan 12 2016

Keywords

Comments

Zeroless means that the decimal expansion has no digit "0", so no element of A056709 is in the sequence.
If we define a function "n*times products of digits plus sum of digits", f(n) = n*A007954(n) + A007953(n), then iterating the function starting at 217421 generates a chain of at least 4 primes: 217421 -> 24351169 -> 157795575151 -> 1522234189034803183.

Examples

			19 => 19*1*9+1+9 = 181 (is prime).
821 => 821*8*2*1+8+2+1 = 13147 (is prime).
2357 => 2357*2*3*5*7+2+3+5+7 = 494987 (is prime).
99995999 => 99995999*(9^7)*5+9*7+5 = 2391388816705223 (is prime).
		

Crossrefs

Programs

  • Maple
    isA267277 := proc(n)
        local pdgs ;
        if isprime(n) then
            pdgs := A007954(n) ;
            if pdgs <> 0 then
                isprime(n*pdgs+A007953(n)) ;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    for n from 1 to 400 do
        if isA267277(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Jan 16 2016
  • Mathematica
    Select[Prime@ Range@ 480, And[Last@ DigitCount@ # == 0, PrimeQ[Function[k, # Times @@ k + Total@ k]@ IntegerDigits@ #]] &] (* Michael De Vlieger, Jan 12 2016 *)

A273460 Numbers n such that sum of the divisors of n (except 1 and n) is equal to the product of the digits of n.

Original entry on oeis.org

98, 101, 103, 107, 109, 307, 329, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901
Offset: 1

Views

Author

Michel Lagneau, May 23 2016

Keywords

Comments

Or numbers n such that A048050(n) = A007954(n).
Most of the terms are primes which have at least one 0 among their digits (A056709). The composite numbers of the sequence are 98, 329, 3383, 4343, 5561, 6623, 12773, 17267, 21479, 57721, 129383, 136259, 142943, 172793, 246959, 256631, 292571,...

Examples

			sigma(98) - 98 - 1 = 171 - 98 - 1 = 72 and 8*9 = 72 so 98 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 3000 do:
      q:=convert(n,base,10):n0:=nops(q):
      pr:=product('q[i]', 'i'=1..n0):p:=sigma(n)-n-1:
       if p=pr
        then
        printf(`%d, `,n):
        else
       fi:
    od:
  • Mathematica
    Do[If[DivisorSigma[1, n]-n-1==Apply[Times, IntegerDigits[n]], Print[n]], {n, 2000}]
    Select[Range[2,2000],Total[Most[Rest[Divisors[#]]]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Jul 20 2019 *)

A309566 a(n) is the least prime that can be written as a sequence of primes separated by n single zeros, and where every 0-splitting is prime.

Original entry on oeis.org

307, 130307, 309370307, 30281172370306703
Offset: 1

Views

Author

Michel Marcus, Aug 08 2019

Keywords

Examples

			a(1) = 307 = A309101(1).
130307 is a term since 3, 7, 13, 307, 1303, 130307 are all prime.
		

Crossrefs

Subsequence of A309101.
Cf. A000040 (primes), A038618 (zeroless primes), A056709 (primes with zeros).

Extensions

a(4) from Daniel Suteu and Giovanni Resta, Aug 09 2019

A321151 Primes that yield squares after deletion of their zero digits.

Original entry on oeis.org

409, 1021, 1069, 1201, 1609, 2089, 3061, 5209, 9601, 10069, 10369, 18049, 20089, 20809, 37021, 37201, 40009, 44089, 44809, 50329, 50929, 52009, 59029, 59209, 60889, 62401, 70921, 79201, 96001, 100069, 100609, 101449, 102001, 102769, 103069, 104161, 106129, 106801, 108769, 109321
Offset: 1

Views

Author

Marius A. Burtea, Nov 23 2018

Keywords

Comments

Subsequence of A056709. The squares divisible by 2, 3 or 5 cannot be obtained. Most of the squares obtained seem to be squares of prime or semiprime numbers. Among the first 399 squares obtained are 289 squares of prime numbers, 104 squares of semiprimes and 6 other squares; these squares were obtained by testing the prime numbers up to 10^7. Deletion of the zero digits from primes up to 10^8 yields 929 squares of prime numbers, 506 squares of semiprimes and 47 other squares. Do similar results occur when larger primes are considered?
From David A. Corneth, Nov 26 2018: (Start)
Terms can be obtained by listing squares coprime to 30, inserting zeros between digits, and testing the primality of the resulting numbers.
Records for omega(s) where s is a square producing a term occur at terms 409, 50929, 10713481, 3601722361, 1531869148081, 807916258118689. (End)

Examples

			      409 is prime and   49 =  7^2 is a square.
     9601 is prime and  961 = 31^2 is a square.
    20809 is prime and  289 = 17^2 is a square.
    10069 is prime and  169 = 13^2 is a square.
   103069 is prime and 1369 = 37^2 is a square.
  1030069 is prime and 1369 = 37^2 is a square.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := PrimeQ[n] && IntegerQ[Sqrt[FromDigits[Select[IntegerDigits[n], #!=0  &]]]]; Select[Range[100000], aQ] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    isok(p) = isprime(p) && issquare(fromdigits(select(x->x, digits(p)))); \\ Michel Marcus, Nov 26 2018
    
  • PARI
    \\ See Corneth link \\ David A. Corneth, Nov 26 2018

A201014 Composite numbers (include 0) whose product of digits is 0.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 102, 104, 105, 106, 108, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 320
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A056709 with respect to A011540. Subsequence of A199978 (nonprime numbers (including 0) whose multiplicative digital root is 0).

Examples

			Number 102 is in sequence because 1*0*2=0.
		

Crossrefs

Cf. A056709 (primes whose product of digits is 0), A034052 (numbers whose product of digits is 0).

Programs

  • Mathematica
    Join[{0},Select[Range[400],CompositeQ[#]&&DigitCount[#,10,0]>0&]] (* Harvey P. Dale, Jul 27 2022 *)
Previous Showing 11-19 of 19 results.