cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A056838 a(n) = floor(n^2/9).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 7, 9, 11, 13, 16, 18, 21, 25, 28, 32, 36, 40, 44, 49, 53, 58, 64, 69, 75, 81, 87, 93, 100, 106, 113, 121, 128, 136, 144, 152, 160, 169, 177, 186, 196, 205, 215, 225, 235, 245, 256, 266, 277, 289, 300, 312, 324, 336, 348
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Range[0, 100]^2/9] (* Paolo Xausa, Aug 21 2024 *)

Formula

G.f.: x^3*(1+x)*(x^2-x+1)^2/((1-x)^3*(1+x+x^2)(x^6+x^3+1)). [R. J. Mathar, Jan 05 2009]

A118013 Triangle read by rows: T(n,k) = floor(n^2/k), 1<=k<=n.

Original entry on oeis.org

1, 4, 2, 9, 4, 3, 16, 8, 5, 4, 25, 12, 8, 6, 5, 36, 18, 12, 9, 7, 6, 49, 24, 16, 12, 9, 8, 7, 64, 32, 21, 16, 12, 10, 9, 8, 81, 40, 27, 20, 16, 13, 11, 10, 9, 100, 50, 33, 25, 20, 16, 14, 12, 11, 10, 121, 60, 40, 30, 24, 20, 17, 15, 13, 12, 11, 144, 72, 48, 36, 28, 24, 20, 18, 16, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2006

Keywords

Comments

T(n,1) = A000290(n); T(n,n) = n;
T(n,2) = A007590(n) for n>1;
T(n,3) = A000212(n) for n>2;
T(n,4) = A002620(n) for n>3;
T(n,5) = A118015(n) for n>4;
T(n,6) = A056827(n) for n>5;
central terms give A008574: T(2*k-1,k) = 4*(k-1)+0^(k-1);
row sums give A118014.

Examples

			Triangle begins:
1,
4, 2,
9, 4, 3,
16, 8, 5, 4,
		

Crossrefs

Cf. A010766.

Programs

  • Haskell
    a118013 n k = a118013_tabl !! (n-1) !! (k-1)
    a118013_row n = map (div (n^2)) [1..n]
    a118013_tabl = map a118013_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
  • PARI
    T(n,k)=n^2\k \\ Charles R Greathouse IV, Jan 15 2012
    

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).

A056829 Nearest integer to n^2/6.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43, 48, 54, 60, 67, 74, 81, 88, 96, 104, 113, 122, 131, 140, 150, 160, 171, 182, 193, 204, 216, 228, 241, 254, 267, 280, 294, 308, 323, 338, 353, 368, 384, 400, 417, 434, 451, 468, 486, 504
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2000

Keywords

Programs

  • Mathematica
    Round[Range[0,60]^2/6] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1},{0,0,1,2,3,4,6,8},60] (* Harvey P. Dale, Oct 11 2020 *)

Formula

G.f.: -x^2*(1+x^4) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^3 ). - R. J. Mathar, Jul 10 2015
a(n) = A056827(n)+A088911(n+3). - R. J. Mathar, Jul 10 2015

A123919 Number of numbers congruent to 2 or 4 mod 6 and <= n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 26, 26, 26
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 29 2006

Keywords

Comments

First differences of A056827. - R. J. Mathar, Nov 22 2008
a(n+2) is the graph radius of the n X n knight graph for n > 7. - Eric W. Weisstein, Nov 20 2019

Crossrefs

Programs

  • GAP
    a:=[0,1,1,2,2,2,2];; for n in [8..80] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 07 2019
    
  • Magma
    [Floor(n/2) - Floor(n/6) : n in [1..100]]; // Wesley Ivan Hurt, Apr 26 2021
  • Mathematica
    a[n_] := Floor[n/2] - Floor[n/6]; Array[a, 80] (* Robert G. Wilson v, Oct 29 2006 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 1, 2, 2, 2, 2}, 80] (* G. C. Greubel, Aug 07 2019 *)
  • PARI
    my(x='x+O('x^80)); concat([0], Vec(x^2*(1+x^2)/((1-x)*(1-x^6)))) \\ G. C. Greubel, Aug 07 2019
    
  • PARI
    a(n) = floor(n/2) - floor(n/6);  \\ Joerg Arndt, Nov 23 2019
    

Formula

a(n) = floor(n/2) - floor(n/6).
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: x^2*(1+x^2)/((1+x)*(1-x)^2*(1+x+x^2)*(1-x+x^2)).
a(n+1) - a(n) = A120325(n+1). (End)
a(n) = A004526(n) - A152467(n). - Omar E. Pol, Nov 25 2019
a(n) = a(n-1)+a(n-6)-a(n-7). - Wesley Ivan Hurt, Apr 26 2021
a(n) = floor((2*n+3+(-1)^n)/6). - Adriano Caroli, Mar 14 2025

A267489 a(n) = n^2 - 4*floor(n^2/6).

Original entry on oeis.org

0, 1, 4, 5, 8, 9, 12, 17, 24, 29, 36, 41, 48, 57, 68, 77, 88, 97, 108, 121, 136, 149, 164, 177, 192, 209, 228, 245, 264, 281, 300, 321, 344, 365, 388, 409, 432, 457, 484, 509, 536, 561, 588, 617, 648, 677, 708, 737, 768, 801, 836, 869, 904
Offset: 0

Views

Author

Kival Ngaokrajang, Jan 16 2016

Keywords

Comments

Inspired by A137932 and A042948.
The pattern is generated by adding subdiagonals parallel to principal diagonals at a spacing of at least 1 box in any direction from the previous generation.
Conjectures:
(i) a(n) is the total number of boxes (or 1's) at the n-th iteration.
(ii) The total number of left boxes (or 0's) is 4*A056827.

Crossrefs

Programs

  • Magma
    [0] cat [n^2-4*Floor(n^2/6): n in [1..70]]; // Vincenzo Librandi, Jan 16 2016
  • Maple
    A267489:=n->n^2-4*floor(n^2/6): seq(A267489(n), n=0..100); # Wesley Ivan Hurt, Apr 11 2017
  • Mathematica
    Table[n^2 - 4 Floor[n^2 / 6], {n, 0, 70}] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    for (n = 0, 100, a = n^2-4*floor(n^2/6); print1(a, ", "))
    
  • PARI
    concat(0, Vec(x*(1+2*x-2*x^2+2*x^3-2*x^4+2*x^5+x^6)/((1-x)^3*(1+x)*(1-x+x^2)*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jan 16 2016
    
  • PARI
    a(n)=n^2 - n^2\6*4 \\ Charles R Greathouse IV, Mar 22 2017
    

Formula

a(n) = n^2 - 4*floor(n^2/6) for n >= 0.
From Colin Barker, Jan 16 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: x*(1+2*x-2*x^2+2*x^3-2*x^4+2*x^5+x^6) / ((1-x)^3*(1+x)*(1-x+x^2)*(1+x+x^2)).
(End)

A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 9, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 2, 5, 19, 1, 1, 1, 1, 1, 3, 7, 25, 1, 1, 1, 1, 1, 2, 4, 9, 33, 1, 1, 1, 1, 1, 1, 2, 5, 11, 41, 1, 1, 1, 1, 1, 1, 2, 3, 6, 14, 51, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 17, 61, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 9, 21
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 11 2014

Keywords

Comments

Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.

Examples

			Table begins:
  n/k  2   3   4   5   6   7  ...
   0   1   1   1   1   1   1  ...
   1   1   1   1   1   1   1  ...
   2   3   1   1   1   1   1  ...
   3   5   2   1   1   1   1  ...
   4   9   3   2   1   1   1  ...
   5  13   5   3   2   1   1  ...
   6  19   7   4   2   2   1  ...
   7  25   9   5   3   2   2  ...
   8  33  11   6   4   3   2  ...
   9  41  14   7   5   3   2  ...
  10  51  17   9   6   4   3  ...
  11  61  21  11   7   5   3  ...
  12  73  25  13   8   5   4  ...
  ...
		

Crossrefs

Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].

A126696 Tenth-squares: floor(n/10)*ceiling(n/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 20, 20, 20, 20, 20, 20, 20, 20, 20, 25, 30, 30, 30, 30, 30, 30, 30, 30, 30, 36, 42, 42, 42, 42, 42, 42, 42, 42, 42, 49, 56, 56, 56, 56, 56, 56, 56, 56, 56
Offset: 0

Views

Author

Jonathan Vos Post, May 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [ Floor(n/10)*Ceiling(n/10) : n in [0..100]];
  • Mathematica
    f[n_]:=Module[{c=n/10},Floor[c]Ceiling[c]];f[Range[0,90]] (* Harvey P. Dale, Apr 04 2011 *)

Formula

Equivalently, floor(n^2/100).
Previous Showing 11-18 of 18 results.