cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015

A059891 a(n) = |{m : multiplicative order of 9 mod m = n}|.

Original entry on oeis.org

4, 6, 12, 14, 20, 58, 12, 88, 112, 150, 60, 290, 12, 138, 732, 144, 124, 1088, 60, 670, 740, 570, 28, 13864, 360, 138, 3968, 1362, 252, 22058, 124, 320, 1972, 1146, 732, 10704, 124, 570, 12260, 15176, 124, 60470, 28, 11634, 195728, 282, 508, 116592, 2032
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) = number of orders of degree-n monic irreducible polynomials over GF(9).
Also, number of primitive factors of 9^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), this sequence (b=9), A059892 (b=10).
Column k=9 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(9^d-1), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 9^d-1], {d, Divisors[n]}];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(9^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(9^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A086251 Number of primitive prime factors of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A prime factor of 2^n - 1 is called primitive if it does not divide 2^r - 1 for any r < n. Equivalently, p is a primitive prime factor of 2^n - 1 if ord(2,p) = n. Zsigmondy's theorem says that there is at least one primitive prime factor for n > 1, except for n=6. See A086252 for those n that have a record number of primitive prime factors.
Number of odd primes p such that A002326((p-1)/2) = n. Number of occurrences of number n in A014664. - Thomas Ordowski, Sep 12 2017
The prime factors are not counted with multiplicity, which matters for a(364)=4 and a(1755)=6. - Jeppe Stig Nielsen, Sep 01 2020

Examples

			a(11) = 2 because 2^11 - 1 = 23*89 and both 23 and 89 have order 11.
		

Crossrefs

Cf. A046800, A046051 (number of prime factors, with repetition, of 2^n-1), A086252, A002588, A005420, A002184, A046801, A049093, A049094, A059499, A085021, A097406, A112927, A237043.

Programs

  • Mathematica
    Join[{0}, Table[cnt=0; f=Transpose[FactorInteger[2^n-1]][[1]]; Do[If[MultiplicativeOrder[2, f[[i]]]==n, cnt++ ], {i, Length[f]}]; cnt, {n, 2, 200}]]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*omega(2^d-1)); \\ Michel Marcus, Sep 12 2017
    
  • PARI
    a(n) = my(m=polcyclo(n, 2)); omega(m/gcd(m,n)) \\ Jeppe Stig Nielsen, Sep 01 2020

Formula

a(n) = Sum{d|n} mu(n/d) A046800(d), inverse Mobius transform of A046800.
a(n) <= A182590(n). - Thomas Ordowski, Sep 14 2017
a(n) = A001221(A064078(n)). - Thomas Ordowski, Oct 26 2017

Extensions

Terms to a(500) in b-file from T. D. Noe, Nov 11 2010
Terms a(501)-a(1200) in b-file from Charles R Greathouse IV, Sep 14 2017
Terms a(1201)-a(1206) in b-file from Max Alekseyev, Sep 11 2022

A212906 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1

Views

Author

Boris Putievskiy, May 29 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 3 mod m = n, with gcd(m,3) = 1, cf. A053446.

Examples

			Triangle T(n,k) begins:
1,   2;
4,   8;
13, 26;
5,  10,  16,  20, 40, 80;
11, 22, 121, 242;
7,  14,  28,  52, 56, 91, 104, 182, 364, 728;
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=2 of A212737.
Column k=1 gives: A218356.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          divisors(3^n-1) minus U(n-1)
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..15);  # Alois P. Heinz, Jun 02 2012
  • Mathematica
    M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (3^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(3^d-1) = A059885(n).

A059907 a(n) = |{m : multiplicative order of n mod m = 2}|.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 6, 4, 6, 3, 12, 2, 10, 6, 8, 4, 13, 2, 18, 6, 10, 4, 16, 4, 12, 9, 12, 4, 26, 2, 20, 6, 8, 12, 20, 4, 15, 6, 16, 4, 32, 2, 24, 10, 10, 6, 20, 4, 26, 9, 18, 4, 26, 6, 32, 12, 12, 4, 28, 2, 20, 10, 12, 18, 25, 4, 24, 6, 26, 4, 52, 2, 18, 10, 12, 18, 26, 4, 40, 8, 14, 5, 28
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{3}| = 1, a(3) = |{4,8}| = 2, a(4) = |{5,15}| = 2, a(5) = |{3,6,8,12,24}| = 5, a(6) = |{7,35}| = 2, a(7) = |{4,8,12,16,24,48}| = 6,...
		

Crossrefs

Programs

  • Maple
    with(numtheory):f := n->tau(n^2-1)-tau(n-1):for n from 1 to 100 do printf(`%d,`,f(n)) od:
  • Mathematica
    a[n_] := Subtract @@ DivisorSigma[0, {n^2-1, n-1}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^2-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^2-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A212485 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1

Views

Author

Boris Putievskiy, Jun 02 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 5 mod m = n, with gcd(m,5) = 1, cf. A050977.

Examples

			Triangle T(n,k) begins:
   1,  2,   4;
   3,  6,   8, 12,  24;
  31, 62, 124;
  13, 16,  26, 39,  48,  52,  78,  104,  156, 208, 312, 624;
  11, 22,  44, 71, 142, 284, 781, 1562, 3124;
  ...
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.

Crossrefs

Column k=3 of A212737.
Column k=1 gives: A218357.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          `if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..8);
  • Mathematica
    M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (5^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,4}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(5^d-1) = A059887.

A212486 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(7) listed in ascending order.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 16, 24, 48, 9, 18, 19, 38, 57, 114, 171, 342, 5, 10, 15, 20, 25, 30, 32, 40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400, 2801, 5602, 8403, 16806, 36, 43, 72, 76, 86, 129, 144, 152, 172, 228, 258
Offset: 1

Views

Author

Boris Putievskiy, Jun 02 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 7 mod m = n, with gcd(m,7) = 1, cf. A053450.

Examples

			Triangle T(n,k) begins:
  1,  2,  3,  6;
  4,  8, 12, 16, 24,  48;
  9, 18, 19, 38, 57, 114, 171, 342;
  5, 10, 15, 20, 25,  30,  32,  40, 50, 60, 75, 80, 96, 100, 120, 150, 160, 200, 240, 300, 400, 480, 600, 800, 1200, 2400;
  ...
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 560-562.
  • V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28

Crossrefs

Column k=4 of A212737.
Column k=1 gives: A218358.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          `if`(n=1, {1, 2, 3, 6}, divisors(7^n-1) minus U(n-1))
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..7);
  • Mathematica
    M[n_] := M[n] = If[n == 1, {1, 2, 3, 6}, Divisors[7^n - 1] ~Complement~ U[n - 1]];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]];
    Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Sep 24 2022, from Maple code *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (7^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,3,6}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(7^d-1) = A059889(n).

A059911 a(n) = |{m : multiplicative order of n mod m = 6}|.

Original entry on oeis.org

0, 3, 10, 16, 37, 10, 42, 24, 58, 53, 164, 26, 68, 38, 32, 68, 169, 22, 222, 38, 42, 50, 328, 40, 180, 219, 108, 26, 334, 82, 460, 82, 92, 72, 220, 108, 449, 86, 128, 80, 192, 22, 336, 110, 222, 218, 540, 84, 778, 129, 150, 80, 270, 54, 328, 356, 132, 68, 348, 22
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{9,21,63}| = 3, a(3) = |{7,14,28,52,56,91,104,182,364,728}| = 10, a(4) = |{13,35,39,45,65,91,105,117,195,273,315,455,585,819,1365,4095}| = 16,...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[{1, -1, -1, 1} * DivisorSigma[0, n^{6, 3, 2, 1} - 1]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025*)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^6-1) - numdiv(n^3-1) - numdiv(n^2-1) + numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^6-1)-tau(n^3-1)-tau(n^2-1)+tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A059908 a(n) = |{m : multiplicative order of n mod m = 3}|.

Original entry on oeis.org

0, 1, 2, 4, 3, 2, 8, 2, 12, 5, 12, 2, 12, 2, 4, 20, 5, 6, 10, 2, 6, 14, 12, 2, 40, 9, 4, 6, 18, 10, 16, 6, 6, 8, 12, 12, 39, 2, 12, 8, 8, 6, 16, 6, 18, 26, 12, 6, 50, 3, 18, 8, 18, 2, 32, 12, 8, 20, 4, 6, 60, 2, 12, 26, 21, 4, 64, 10, 6, 8, 8, 6, 20, 14, 4, 12, 6, 4, 64, 2, 70, 7, 12, 6, 24
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{7}| = 1, a(3) = |{13,26}| = 2, a(4) = |{7,9,21,63}| = 4, a(5) = |{31,62,124}| = 3, a(6) = |{43,215}| = 2, a(7) = |{9,18,19,38,57,114,171,342}| = 8,...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^3-1]-DivisorSigma[0,n-1],{n,90}] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^3-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^3-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A059909 a(n) = |{m : multiplicative order of n mod m = 4}|.

Original entry on oeis.org

0, 2, 6, 4, 12, 4, 26, 18, 14, 6, 24, 12, 64, 8, 16, 8, 66, 20, 36, 8, 64, 24, 76, 6, 28, 12, 64, 24, 48, 12, 100, 40, 50, 48, 36, 8, 96, 40, 28, 8, 104, 12, 208, 36, 24, 36, 200, 18, 48, 36, 36, 24, 128, 8, 152, 16, 172, 24, 48, 12, 48, 36, 56, 72, 40, 8, 128, 56, 48, 40
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{5, 15}| = 2, a(3) = |{5, 10, 16, 20, 40, 80}| = 6, a(4) = |{17, 51, 85, 255}| = 4, a(5) = |{13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624}| = 12, ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^4-1]-DivisorSigma[0,n^2-1],{n,70}] (* Harvey P. Dale, Nov 30 2011 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^4-1) - numdiv(n^2-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^4-1)-tau(n^2-1), where tau(n) = number of divisors of n A000005. More generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.
Previous Showing 11-20 of 21 results. Next