cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A059895 Table a(i,j) = product prime[k]^(Ei[k] AND Ej[k]) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; AND is the bitwise operation on binary representation of the exponents.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Analogous to GCD, with AND replacing MIN.

Examples

			The top left 18 X 18 corner of the array:
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  1,  2,  1,  2,  1,  1,  1,  2,  1,  1,  1,  2
1,  1,  3,  1,  1,  3,  1,  1,  1,  1,  1,  3,  1,  1,  3,  1,  1,  1
1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  1,  1,  1
1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1
1,  2,  3,  1,  1,  6,  1,  2,  1,  2,  1,  3,  1,  2,  3,  1,  1,  2
1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1
1,  2,  1,  4,  1,  2,  1,  8,  1,  2,  1,  4,  1,  2,  1,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  9,  1,  1,  1,  1,  1,  1,  1,  1,  9
1,  2,  1,  1,  5,  2,  1,  2,  1, 10,  1,  1,  1,  2,  5,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 11,  1,  1,  1,  1,  1,  1,  1
1,  1,  3,  4,  1,  3,  1,  4,  1,  1,  1, 12,  1,  1,  3,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 13,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  7,  2,  1,  2,  1,  1,  1, 14,  1,  1,  1,  2
1,  1,  3,  1,  5,  3,  1,  1,  1,  5,  1,  3,  1,  1, 15,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 16,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 17,  1
1,  2,  1,  1,  1,  2,  1,  2,  9,  2,  1,  1,  1,  2,  1,  1,  1, 18
A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 AND 3)* 3^(3 AND 5) = 2^1*3^1 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059896(x,y) / A059897(x,y).
A(x,y) * A059896(x,y) = A(x,y)^2 * A059897(x,y) = x*y.
(End)

Extensions

Data section extended to 120 terms by Antti Karttunen, Apr 11 2017

A329329 Multiplicative operator of a ring over the positive integers that has A059897(.,.) as additive operator and is isomorphic to GF(2)[x,y] with A329050(i,j) the image of x^i * y^j.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 10, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Peter Munn, Nov 11 2019

Keywords

Comments

Square array A(n,k), n >= 1, k >= 1, read by descending antidiagonals.
The group defined by the binary operation A059897(.,.) over the positive integers is commutative with all elements self-inverse, and isomorphic to the additive group of GF(2) polynomial rings such as GF(2)[x,y]. There is a unique isomorphism extending each bijective mapping between respective minimal generating sets. The lexicographically earliest minimal generating set for the A059897 group is A050376, often called the Fermi-Dirac primes. This set has a natural arrangement in a square array, given by A329050(i,j) = prime(i+1)^(2^j), i >= 0, j >= 0. The most meaningful generating set for the additive group of GF(2)[x,y] is {x^i * y^j: i >= 0, j >= 0}, which similarly forms a square array. All this makes A329050(i,j) especially appropriate to be the image (under an isomorphism) of the GF(2) polynomial x^i * y^j.
Using g to denote the intended isomorphism, we specify g(x^i * y^j) = A329050(i,j). This maps minimal generating sets of the additive groups, so the definition of g is completed by specifying g(a+b) = A059897(g(a), g(b)). We then calculate the image under g of polynomial multiplication in GF(2)[x,y], giving us this sequence as the matching multiplicative operator for an isomorphic ring over the positive integers. Using f to denote the inverse of g, A[n,k] = g(f(n) * f(k)).
See the formula section for an alternative definition based on the A329050 array, independent of GF(2)[x,y].
Closely related to A306697 and A297845. If A059897 is replaced in the alternative definition by A059896 (and the definition is supplemented by the derived identity for the absorbing element, shown in the formula section), we get A306697; if A059897 is similarly replaced by A003991 (integer multiplication), we get A297845. This sequence and A306697, considered as multiplicative operators, are carryless arithmetic equivalents of A297845. A306697 uses a method analogous to binary-OR when there would be a multiplicative carry, while this sequence uses a method analogous to binary exclusive-OR. In consequence A(n,k) <> A297845(n,k) exactly when A306697(n,k) <> A297845(n,k). This relationship is not symmetric between the 3 sequences: there are n and k such that A(n,k) = A306697(n,k) <> A297845(n,k). For example A(54,72) = A306697(54,72) = 273375000 <> A297845(54,72) = 22143375000.

Examples

			Square array A(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   10   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343    32   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441    22   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573    80
		

Crossrefs

A059897, A225546, A329050 are used to express relationship between terms of this sequence.
Related binary operations: A297845/A003991, A306697/A059896.

Programs

  • PARI
    \\ See Links section.

Formula

Alternative definition: (Start)
A(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
A(A059897(n,k), m) = A059897(A(n,m), A(k,m)).
A(m, A059897(n,k)) = A059897(A(m,n), A(m,k)).
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1 (1 is an absorbing element).
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
A(A019565(i), 2^j) = A019565(i)^j = A329332(i,j).
A(A225546(i), A225546(j)) = A225546(A(i,j)).
A(n,k) = A306697(n,k) = A297845(n,k), for n = A050376(i), k = A050376(j).
A(n,k) <= A306697(n,k) <= A297845(n,k).
A(n,k) < A297845(n,k) if and only if A306697(n,k) < A297845(n,k).

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A234840 Self-inverse and multiplicative permutation of integers: a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2, a(p_i) = p_{a(i+1)-1} for primes with index i > 2, and a(u * v) = a(u) * a(v) for u, v > 0.

Original entry on oeis.org

0, 1, 3, 2, 9, 19, 6, 61, 27, 4, 57, 11, 18, 281, 183, 38, 81, 101, 12, 5, 171, 122, 33, 263, 54, 361, 843, 8, 549, 29, 114, 59, 243, 22, 303, 1159, 36, 1811, 15, 562, 513, 1091, 366, 157, 99, 76, 789, 409, 162, 3721, 1083, 202, 2529, 541, 24, 209, 1647, 10, 87, 31
Offset: 0

Views

Author

Antti Karttunen, Dec 31 2013

Keywords

Comments

The permutation satisfies A008578(a(n)) = a(A008578(n)) for all n, and is self-inverse.
The sequence of fixed points begins as 0, 1, 6, 11, 29, 36, 66, 95, 107, 121, 149, 174, 216, 313, 319, 396, 427, ... and is itself multiplicative in a sense that if a and b are fixed points, then also a*b is a fixed point.
The records are 0, 1, 3, 9, 19, 61, 281, 361, 843, 1159, 1811, 3721, 5339, 5433, 17141, 78961, 110471, 236883, 325679, ...
and they occur at positions 0, 1, 2, 4, 5, 7, 13, 25, 26, 35, 37, 49, 65, 74, 91, 169, 259, 338, 455, ...
(Note how the permutations map squares to squares, and in general keep the prime signature the same.)
Composition with similarly constructed A235199 gives the permutations A234743 & A234744 with more open cycle-structure.
The result of applying a permutation of the prime numbers to the prime factors of n. - Peter Munn, Dec 15 2019

Examples

			a(4) = a(2 * 2) = a(2)*a(2) = 3*3 = 9.
a(5) = a(p_3) = p_{a(3+1)-1} = p_{9-1} = p_8 = 19.
a(11) = a(p_5) = p_{a(5+1)-1} = p_{a(6)-1} = p_5 = 11.
		

Crossrefs

List below gives similarly constructed permutations, which all force a swap of two small numbers, with (the rest of) primes permuted with the sequence itself and the new positions of composite numbers defined by the multiplicative property. Apart from the first one, all satisfy A000040(a(n)) = a(A000040(n)) except for a finite number of cases (with A235200, substitute A065091 for A000040):
A235200 (swaps 3 & 5).
A235199 (swaps 5 & 7).
A235201 (swaps 3 & 4).
A235487 (swaps 7 & 8).
A235489 (swaps 8 & 9).
Properties preserved by the sequence as a function: A000005, A001221, A001222, A051903, A101296.
A007913, A007947, A008578, A019554, A055231, A059895, A059896, A059897 are used to express relationships between terms of this sequence.

Programs

  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 0, 1, 1, 2, 3, 3, 2, _, Product[{p, e} = pe; Prime[a[PrimePi[p] + 1] - 1]^e, {pe, FactorInteger[n]}]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 21 2021 *)
  • PARI
    A234840(n) = if(n<=1,n,my(f = factor(n)); for(i=1, #f~, if(2==f[i,1], f[i,1]++, if(3==f[i,1], f[i,1]--, f[i,1] = prime(-1+A234840(1+primepi(f[i,1])))))); factorback(f)); \\ Antti Karttunen, Aug 23 2018

Formula

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2, a(p_i) = p_{a(i+1)-1} for primes with index i > 2, and a(u * v) = a(u) * a(v) for u, v > 0.
From Peter Munn, Dec 14 2019. These identities would hold also if a(n) applied any other permutation of the prime numbers to the prime factors of n: (Start)
A000005(a(n)) = A000005(n).
A001221(a(n)) = A001221(n).
A001222(a(n)) = A001222(n).
A051903(a(n)) = A051903(n).
A101296(a(n)) = A101296(n).
a(A007913(n)) = A007913(a(n)).
a(A007947(n)) = A007947(a(n)).
a(A019554(n)) = A019554(a(n)).
a(A055231(n)) = A055231(a(n)).
a(A059895(n,k)) = A059895(a(n), a(k)).
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A059897(n,k)) = A059897(a(n), a(k)).
(End)

A306697 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is obtained by applying a Minkowski sum to sets related to the Fermi-Dirac factorizations of n and of k (see Comments for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 30, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Mar 05 2019

Keywords

Comments

For any m > 0:
- let F(m) be the set of distinct Fermi-Dirac primes (A050376) with product m,
- for any i >=0 0 and j >= 0, let f(prime(i+1)^(2^i)) be the lattice point with coordinates X=i and Y=j (where prime(k) denotes the k-th prime number),
- f establishes a bijection from the Fermi-Dirac primes to the lattice points with nonnegative coordinates,
- let P(m) = { f(p) | p in F(m) },
- P establishes a bijection from the nonnegative integers to the set, say L, of finite sets of lattice points with nonnegative coordinates,
- let Q be the inverse of P,
- for any n > 0 and k > 0:
T(n, k) = Q(P(n) + P(k))
where "+" denotes the Minkowski addition on L.
This sequence has similarities with A297845, and their data sections almost match; T(6, 6) = 30, however A297845(6, 6) = 90.
This sequence has similarities with A067138; here we work on dimension 2, there in dimension 1.
This sequence as a binary operation distributes over A059896, whereas A297845 distributes over multiplication (A003991) and A329329 distributes over A059897. See the comment in A329329 for further description of the relationship between these sequences. - Peter Munn, Dec 19 2019

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   30   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343   128   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441   110   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573   720
		

Crossrefs

Columns (some differing for term 1) and equivalently rows: A003961(3), A000290(4), A045966(5), A045968(7), A045970(11).
Related binary operations: A067138, A059896, A297845/A003991, A329329/A059897.

Programs

  • PARI
    \\ See Links section.

Formula

For any m > 0, n > 0, k > 0, i >= 0, j >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 3) = A003961(n),
- T(n, 4) = n^2 (A000290),
- T(n, 5) = A357852(n),
- T(n, 7) = A045968(n) (when n > 1),
- T(n, 11) = A045970(n) (when n > 1),
- T(n, 2^(2^i)) = n^(2^i),
- T(2^i, 2^j) = 2^A067138(i, j),
- T(A019565(i), A019565(j)) = A019565(A067138(i, j)),
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(2^(2^i), 2^(2^j)) = 2^(2^(i + j)),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A064547(T(n, k)) <= A064547(n) * A064547(k).
From Peter Munn, Dec 05 2019:(Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
Equivalently, T(prime(i_1 - 1)^(2^(j_1)), prime(i_2 - 1)^(2^(j_2))) = prime(i_1+i_2 - 1)^(2^(j_1+j_2)), where prime(i) = A000040(i).
T(A059896(i,j), k) = A059896(T(i,k), T(j,k)) (T distributes over A059896).
T(A019565(i), 2^j) = A019565(i)^j.
T(A225546(i), A225546(j)) = A225546(T(i,j)).
(End)

A045966 a(1)=3; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^e_i.

Original entry on oeis.org

3, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203, 185, 67
Offset: 1

Views

Author

Keywords

Comments

If we had a(1) = 1 (instead of 3), then this would be fully multiplicative with a(prime(k)) = prime(k+2) (see A357852). - Antti Karttunen, Jan 10 2020

References

Crossrefs

See A027748, A124010 for factorization data for n.
Sequences with similar definitions: A045967, A045968, A045970, A126272.
A059896 is used to express relationship between terms of this sequence.
A357852 is a slightly better version. - N. J. A. Sloane, Oct 29 2022

Programs

  • Haskell
    a045966 1 = 3
    a045966 n = product $ zipWith (^)
                (map a101300 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jun 03 2013, Dec 23 2011
    
  • Mathematica
    a[1] = 3; a[n_] := With[{f = FactorInteger[n]}, Times @@ (Prime[PrimePi[f[[All, 1]]]+2]^f[[All, 2]])]; Array[a, 60] (* Jean-François Alcover, Jun 19 2015 *)
  • PARI
    A045966(n) = if(1==n,3,my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(1+nextprime(1+f[i, 1]))); factorback(f)); \\ Antti Karttunen, Jan 10 2020

Formula

From Peter Munn, Dec 27 2019, for n >= 2, k >= 2: (Start)
a(n) = A003961^2(n).
a(n^k) = a(n)^k.
a(A003961(n)) = A003961(a(n)).
a(A059896(n,k)) = A059896(a(n), a(k)).
(End)

Extensions

More terms from David W. Wilson

A225547 Fixed points of A225546.

Original entry on oeis.org

1, 2, 9, 12, 18, 24, 80, 108, 160, 216, 625, 720, 960, 1250, 1440, 1792, 1920, 2025, 3584, 4050, 5625, 7500, 8640, 11250, 15000, 16128, 17280, 18225, 21504, 24300, 32256, 36450, 43008, 48600, 50000, 67500, 100000, 135000, 143360, 162000, 193536, 218700, 286720, 321489, 324000, 387072, 437400, 450000, 600000
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

Every number in this sequence is the product of a unique subset of A225548.
From Peter Munn, Feb 11 2020: (Start)
The terms are the numbers whose Fermi-Dirac factors (see A050376) occur symmetrically about the main diagonal of A329050.
Closed under the commutative binary operation A059897(.,.). As numbers are self-inverse under A059897, the sequence thereby forms a subgroup of the positive integers under A059897.
(End)

Examples

			The Fermi-Dirac factorization of 160 is 2 * 5 * 16. The factors 2, 5 and 16 are A329050(0,0), A329050(2,0) and A329050(0,2), having symmetry about the main diagonal of A329050. So 160 is in the sequence.
		

Crossrefs

Subsequences: A191554, A191555, A225548.
Cf. fixed points of the comparable A122111 involution: A088902.

Programs

  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    ff(fa) = {for (i=1, #fa~, my(p=fa[i, 1]); fa[i, 1] = A019565(fa[i, 2]); fa[i, 2] = 2^(primepi(p)-1); ); fa; } \\ A225546
    pos(k, fs) = for (i=1, #fs, if (fs[i] == k, return(i)););
    normalize(f) = {my(list = List()); for (k=1, #f~, my(fk = factor(f[k,1])); for (j=1, #fk~, listput(list, fk[j,1]));); my(fs = Set(list)); my(m = matrix(#fs, 2)); for (i=1, #m~, m[i,1] = fs[i]; for (k=1, #f~, m[i,2] += valuation(f[k,1], fs[i])*f[k,2];);); m;}
    isok(n) = my(fa=factor(n), fb=ff(fa)); normalize(fb) == fa; \\ Michel Marcus, Aug 05 2022

A366244 The largest infinitary divisor of n that is a term of A366242.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 16, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 48, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 16, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

See the formula section for the relationships with A007913, A046100, A059895, A059896, A059897, A225546, A247503, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 0, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = sum(k = 0, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063694(e).
a(n) = n / A366245(n).
a(n) >= 1, with equality if and only if n is a term of A366243.
a(n) <= n, with equality if and only if n is a term of A366242.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(Sum_{k>=1} p^(A063694(k)-2*k)) = 0.35319488024808595542... .
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366242 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k).
Also defined by:
- for n in A046100, a(n) = A007913(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366245(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A247503(n)).
(End)

A366245 The largest infinitary divisor of n that is a term of A366243.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

First differs from A335324 at n = 256.

Crossrefs

See the formula section for the relationships with A008833, A046100, A059895, A059896, A059897, A225546, A248101, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063695(e).
a(n) = n / A366244(n).
a(n) >= 1, with equality if and only if n is a term of A366242.
a(n) <= n, with equality if and only if n is a term of A366243.
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366243 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k+1).
Also defined by:
- for n in A046100, a(n) = A008833(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366244(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A248101(n)).
(End)

A339245 Partrich numbers: positive integers whose square part and squarefree part are divisible by 2 and an odd prime.

Original entry on oeis.org

216, 360, 504, 600, 792, 864, 936, 1000, 1080, 1176, 1224, 1368, 1400, 1440, 1512, 1656, 1944, 1960, 2016, 2088, 2200, 2232, 2376, 2400, 2520, 2600, 2664, 2744, 2808, 2904, 2952, 3000, 3096, 3168, 3240, 3384, 3400, 3456, 3672, 3744, 3800, 3816, 3960, 4000, 4056, 4104, 4200
Offset: 1

Views

Author

Peter Munn, Nov 28 2020

Keywords

Comments

Not named after anyone, partrich numbers have the square part of their odd part, the square part of their even part (A234957), the squarefree part of their odd part and the squarefree part of their even part (A056832) all greater than 1.
Numbers whose odd part and even part are nonsquare and nonsquarefree.
All terms are divisible by 8. If m is present, 2m is absent and 4m is present.
Closed under multiplication by any square and under application of A059896: for n, k >= 1, A059896(a(n), k) is in the sequence.
From Peter Munn, Apr 07 2021: (Start)
The first deficient partrich number is 39304 = 2^3 * 17^3. (ascertained by Amiram Eldar)
The first 7 terms generate Carmichael numbers using the method of Erdős described in A287840.
(End)

Examples

			A positive integer is present if and only if it factorizes as 2 times an odd squarefree number > 1, an even square that is a power of 4 and an odd square > 1. This factorization of the initial terms is shown below.
   n  a(n)
   1   216 = 2 *  3 *  4 *  9,
   2   360 = 2 *  5 *  4 *  9,
   3   504 = 2 *  7 *  4 *  9,
   4   600 = 2 *  3 *  4 * 25,
   5   792 = 2 * 11 *  4 *  9,
   6   864 = 2 *  3 * 16 *  9,
   7   936 = 2 * 13 *  4 *  9,
   8  1000 = 2 *  5 *  4 * 25,
   9  1080 = 2 * 15 *  4 *  9,
  10  1176 = 2 *  3 *  4 * 49,
  ...
		

Crossrefs

Subsequences: A017139, A017643.

Programs

  • Mathematica
    q[n_] := Module[{ie = IntegerExponent[n, 2], odd}, ie > 2 && OddQ[ie] && !SquareFreeQ[(odd = n/2^ie)] && !IntegerQ @ Sqrt[odd]]; Select[Range[4200], q] (* Amiram Eldar, Dec 04 2020 *)

Formula

A008586 INTERSECT A028983 INTERSECT A036554 INTERSECT A038838.
Asymptotic density is 1/12 - 2/(3 * Pi^2) = 0.01578587757... . (Formula due to Amiram Eldar.)
Previous Showing 11-20 of 26 results. Next