cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 142 results. Next

A071172 Number of squarefree integers <= 10^n.

Original entry on oeis.org

1, 7, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302, 607927101854026645617
Offset: 0

Views

Author

Robert G. Wilson v, Jun 10 2002

Keywords

Comments

The limit of a(n)/10^n is 6/Pi^2 (see A059956). - Gerard P. Michon, Apr 30 2009

Crossrefs

Apart from first two terms, same as A053462.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009

Programs

  • Mathematica
    f[n_] := Sum[ MoebiusMu[i]Floor[n/i^2], {i, Sqrt@ n}]; Table[ f[10^n], {n, 0, 14}] (* Robert G. Wilson v, Aug 04 2012 *)
  • PARI
    a(n)=sum(d=1,sqrtint(n=10^n),moebius(d)*n\d^2) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(s); forsquarefree(d=1,sqrtint(n=10^n), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A071172(n): return sum(mobius(k)*(10**n//k**2) for k in range(1,isqrt(10**n)+1)) # Chai Wah Wu, May 10 2024

Formula

a(n) = Sum_{i=1..10^(n/2)} A008683(i)*floor(10^n/i^2). - Gerard P. Michon, Apr 30 2009

Extensions

Extended by Eric W. Weisstein, Sep 14 2003
3 more terms from Jud McCranie, Sep 01 2005
4 more terms from Gerard P. Michon, Apr 30 2009

A280292 a(n) = sopfr(n) - sopf(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 4, 3, 0, 0, 2, 0, 0, 0, 6, 0, 3, 0, 2, 0, 0, 0, 4, 5, 0, 6, 2, 0, 0, 0, 8, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 3, 0, 0, 6, 7, 5, 0, 2, 0, 6, 0, 4, 0, 0, 0, 2, 0, 0, 3, 10, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 5, 2, 0, 0, 0, 6, 9, 0, 0, 2, 0, 0, 0, 4, 0, 3, 0, 2, 0, 0, 0, 8, 0, 7, 3, 7, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Comments

Alladi and Erdős (1977) proved that for all numbers m>=0, m!=1, the sequence of numbers k such that a(k) = m has a positive asymptotic density which is equal to a rational multiple of 1/zeta(2) = 6/Pi^2 (A059956). For example, when m=0, the sequence is the squarefree numbers (A005117), whose density is 6/Pi^2, and when m=2 the sequence is A081770, whose density is 1/Pi^2. - Amiram Eldar, Nov 02 2020
Sum of prime factors minus sum of distinct prime factors. Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916. - Gus Wiseman, Feb 21 2025

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See pp. 164-166.
  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 165.

Crossrefs

A multiplicative version is A003557, firsts A064549 (sorted A001694).
For length instead of sum we have A046660.
For product instead of sum we have A066503, firsts A381076.
Positions of first appearances are A280286 (sorted A381075).
For indices instead of factors we have A380955, firsts A380956 (sorted A380957).
For exponents instead of factors we have A380958, firsts A380989.
A000040 lists the primes, differences A001223.
A001222 counts prime factors (distinct A001221).
A003963 gives product of prime indices, distinct A156061, excess A380986.
A005117 lists squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A027746 lists prime factors, distinct A027748.
A112798 lists prime indices (sum A056239), distinct A304038 (sum A066328).

Programs

  • Mathematica
    Array[Total@ # - Total@ Union@ # &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #] &, 105] (* Michael De Vlieger, Feb 25 2019 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]);
    a(n) = sopfr(n) - sopf(n);

Formula

a(n) = A001414(n) - A008472(n).
a(A005117(n)) = 0.
a(n) = A001414(A003557(n)). - Antti Karttunen, Oct 07 2017
Additive with a(1) = 0 and a(p^e) = p*(e-1) for prime p and e > 0. - Werner Schulte, Feb 24 2019
From Amiram Eldar, Nov 02 2020: (Start)
a(n) = a(A057521(n)).
Sum_{n<=x} a(n) ~ x*log(log(x)) + O(x) (Alladi and Erdős, 1977).
Sum_{n<=x, n nonsquarefree} 1/a(n) ~ c*x + O(sqrt(x)*log(x)), where c = Integral_{t=0..1} (F(t)-6/Pi^2)/t dt, and F(t) = Product_{p prime} (1-1/p)*(1-1/(t^p - p)) (De Koninck et al., 1981; Finch, 2018), or, equivalently c = Sum_{k>=2} d(k)/k = 0.1039..., where d(k) = (6/Pi^2)*A338559(k)/A338560(k) is the asymptotic density of the numbers m with a(m) = k (Alladi and Erdős, 1977; Ivić, 2003). (End)

Extensions

More terms from Antti Karttunen, Oct 07 2017

A132696 Decimal expansion of 6/Pi.

Original entry on oeis.org

1, 9, 0, 9, 8, 5, 9, 3, 1, 7, 1, 0, 2, 7, 4, 4, 0, 2, 9, 2, 2, 6, 6, 0, 5, 1, 6, 0, 4, 7, 0, 1, 7, 2, 3, 4, 4, 4, 1, 3, 5, 1, 5, 7, 4, 8, 8, 8, 5, 4, 7, 7, 3, 8, 4, 9, 7, 2, 0, 0, 8, 1, 2, 8, 7, 0, 6, 7, 6, 1, 5, 7, 1, 6, 1, 0, 7, 1, 8, 4, 2, 1, 0, 8, 1, 3, 6, 5, 6, 3, 3, 1, 9, 5, 0, 3, 7, 0, 3, 1, 4, 7, 2, 8, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007, Nov 02 2007

Keywords

Comments

6/Pi = Volume of the cuboid (If L1>L2>L3) / Volume of the inscribed ellipsoid.
6/Pi = Volume of the cuboid (If L1>(L2=L3)) / Volume of the inscribed spheroid.
6/Pi = Volume of the regular hexahedron (or cube) / Volume of the inscribed Sphere.
6/Pi = 1 / Arc of 30 degrees.
6/Pi = Volume of the cuboid (If L1<(L2=L3)) / Volume of the inscribed spheroid.
6/Pi = Surface area of the regular hexahedron (or cube) / surface area of the inscribed sphere.

Examples

			1.90985931710274402922660516047... .
		

Crossrefs

Programs

Formula

Equals Product_{k>=1} (2k+1)^3 / ( (2k)^2*(2k+3) ). - Federico Provvedi, Nov 09 2024

Extensions

More terms from Erich Friedman, Mar 22 2008

A070258 Smallest of 3 consecutive numbers each divisible by a square.

Original entry on oeis.org

48, 98, 124, 242, 243, 342, 350, 423, 475, 548, 603, 724, 774, 844, 845, 846, 1024, 1250, 1274, 1323, 1375, 1420, 1448, 1519, 1664, 1674, 1680, 1681, 1682, 1848, 1862, 1924, 2007, 2023, 2056, 2106, 2150, 2223, 2275, 2348, 2366, 2523, 2527, 2574, 2644
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 09 2002

Keywords

Comments

The sequence includes an infinite family of arithmetic progressions. Such AP's can be constructed to each term, with large differences [like e.g. square of primorials, A061742]. It is necessary to solve suitable systems of linear Diophantine equations. E.g.: subsequences of triples of terms = {900a+548, 900a+549, 900a+550} = {4(225f+137), 9(100f+61), 25(36f+22)}; starting terms in this sequence = {548, 1448, 2348, ...}; difference = A002110(3)^2. - Labos Elemer, Nov 25 2002
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 2, 16, 180, 1868, 18649, 186335, 1863390, 18634236, 186340191, ... . Apparently, the asymptotic density of this sequence exists and equals 0.01863... . - Amiram Eldar, Jan 18 2023
The asymptotic density of this sequence is 1 - 3/zeta(2) + 3 * Product_{p prime} (1 - 2/p^2) - Product_{p prime} (1 - 3/p^2) = 1 - 3 * A059956 + 3 * A065474 - A206256 = 0.018634010349844827414... . - Amiram Eldar, Sep 12 2024

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 48, p. 18, Ellipses, Paris, 2008.

Crossrefs

Subsequence of A013929 and A068781.

Programs

  • Mathematica
    f[n_] := Union[ Transpose[ FactorInteger[n]] [[2]]] [[ -1]]; a = 0; b = 1; Do[c = f[n]; If[a> 1 && b > 1 && c > 1, Print[n - 2]]; a = b; b = c, {n, 3, 10^6}]
    Flatten[Position[Partition[SquareFreeQ/@Range[3000],3,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *)
    f@n_ := Flatten@  Position[Partition[SquareFreeQ /@ Range@2000, n, 1], Table[False, {n}]]; f@3 (* Hans Rudolf Widmer, Aug 30 2022 *)

Formula

a(n) = A235578(n) - 1. - Amiram Eldar, Feb 09 2021

Extensions

More terms from Jason Earls and Robert G. Wilson v, May 10 2002
Offset corrected by Amiram Eldar, Feb 09 2021

A206256 Decimal expansion of Product_{p prime} (1 - 3/p^2).

Original entry on oeis.org

1, 2, 5, 4, 8, 6, 9, 8, 0, 9, 0, 5, 8, 0, 9, 2, 9, 8, 3, 3, 4, 4, 2, 7, 9, 9, 9, 0, 8, 9, 7, 5, 3, 5, 4, 0, 5, 7, 1, 9, 8, 4, 6, 8, 7, 2, 7, 8, 9, 2, 2, 8, 4, 6, 9, 4, 2, 2, 0, 4, 9, 6, 1, 0, 7, 4, 4, 0, 1, 0, 1, 9, 6, 1, 7, 1, 5, 4, 5, 8, 3, 7, 5, 4, 9, 1, 1, 1, 2, 2, 7, 1, 5, 7, 2, 8, 8, 3, 9, 9, 1, 7, 4, 7, 4, 6
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2012, based on a posting by Warren Smith to the Math Fun Mailing List, Feb 04 2012

Keywords

Comments

For a randomly selected number k, this is the probability that k, k+1, k+2 all are squarefree.

Examples

			0.1254869809058...
		

Crossrefs

Programs

  • Maple
    # See A175640 using efact := 1-3/p^2. - R. J. Mathar, Mar 22 2012
  • Mathematica
    $MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 3}, {0, -6}, m]; RealDigits[(1/4) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Oct 01 2019 *)
  • PARI
    prodeulerrat(1 - 3/p^2) \\ Amiram Eldar, Mar 16 2021

Extensions

More terms from Amiram Eldar, Oct 01 2019
More terms from Vaclav Kotesovec, Dec 17 2019

A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			1.602317102305418052349626315621161003776939495785572...
		

Crossrefs

Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
From Amiram Eldar, Dec 24 2024: (Start)
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A094387 Numbers k such that gcd(k, A000120(k)) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 52, 53, 56, 57, 59, 61, 62, 64, 65, 67, 70, 71, 73, 74, 75, 76, 77, 79, 82, 83, 85, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 100, 101, 103
Offset: 1

Views

Author

Benoit Cloitre, Jun 08 2004

Keywords

Comments

This sequence has density 6/Pi^2 (Olivier, 1975).
All primes, powers of 2, and powers of two plus one are terms of this sequence. - William Boyles, Jan 27 2022

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge University Press, 2003, p. 117.

Crossrefs

Programs

  • Mathematica
    Select[Range[100], CoprimeQ[#, DigitCount[#, 2, 1]] &] (* Amiram Eldar, Nov 22 2020 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (gcd(n, norml2(binary(n))) == 1, print1(n, ", ")););} \\ Michel Marcus, May 25 2013
    
  • Python
    from math import gcd
    def ok(n): return gcd(n, bin(n).count('1')) == 1
    print([k for k in range(104) if ok(k)]) # Michael S. Branicky, Jan 25 2022

A271971 Decimal expansion of (6/Pi^2) Sum_{p prime} 1/(p(p+1)), a Meissel-Mertens constant related to the asymptotic density of certain sequences of integers.

Original entry on oeis.org

2, 0, 0, 7, 5, 5, 7, 2, 2, 0, 1, 9, 2, 6, 5, 9, 8, 6, 9, 9, 6, 2, 5, 0, 7, 2, 3, 1, 1, 4, 4, 0, 4, 7, 6, 5, 8, 5, 3, 5, 3, 5, 5, 5, 5, 3, 5, 2, 5, 6, 1, 9, 1, 6, 1, 5, 9, 7, 6, 3, 2, 9, 8, 3, 6, 5, 2, 5, 4, 0, 7, 4, 7, 4, 7, 9, 6, 4, 9, 7, 9, 1, 2, 1, 1, 9, 0, 9, 4, 2, 6, 8, 4, 5, 0, 3, 5, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Comments

This is the density of A060687, the numbers with one 2 and the rest 1s in the exponents of its prime factorization. - Charles R Greathouse IV, Aug 03 2016

Examples

			0.200755722019265986996250723114404765853535555352561916...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens Constants, p. 95.

Crossrefs

Programs

  • Mathematica
    digits = 100; S = (6/Pi^2)*NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[ S, 10, digits] // First
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2, (-1)^k*primezeta(k))*6/Pi^2 \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1)))/zeta(2) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (6/Pi^2)*A179119.

A195089 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 5.

Original entry on oeis.org

64, 192, 288, 320, 432, 448, 648, 704, 729, 800, 832, 960, 972, 1088, 1216, 1344, 1440, 1458, 1472, 1568, 1856, 1984, 2000, 2016, 2112, 2160, 2240, 2368, 2400, 2496, 2624, 2752, 3008, 3024, 3168, 3240, 3264, 3392, 3520, 3600, 3645, 3648, 3744, 3776, 3872, 3904
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0118439..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195089 n = a195089_list !! (n-1)
    a195089_list = filter ((== 5) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[4000],PrimeOmega[#]-PrimeNu[#]==5&]
  • PARI
    is(n)=bigomega(n)-omega(n)==5 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 5. - Reinhard Zumkeller, Nov 29 2015

A195091 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 7.

Original entry on oeis.org

256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 3200, 3328, 3840, 3888, 4352, 4864, 5376, 5760, 5832, 5888, 6272, 6561, 7424, 7936, 8000, 8064, 8448, 8640, 8748, 8960, 9472, 9600, 9984, 10496, 11008, 12032, 12096, 12672, 12960, 13056, 13122, 13568
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0029589..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195091 n = a195091_list !! (n-1)
    a195091_list = filter ((== 7) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[14000],PrimeOmega[#]-PrimeNu[#]==7&]
  • PARI
    is(n)=bigomega(n)-omega(n)==7 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 7. - Reinhard Zumkeller, Nov 29 2015
Previous Showing 21-30 of 142 results. Next