cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 75 results. Next

A218576 G.f.: exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*(1 + x^k)^n) ).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 25, 44, 79, 137, 237, 408, 689, 1162, 1946, 3231, 5342, 8776, 14340, 23326, 37758, 60847, 97670, 156145, 248697, 394719, 624343, 984360, 1547187, 2424581, 3788730, 5904230, 9176723, 14226914, 22002523, 33947526, 52258177, 80268131, 123028407
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2012

Keywords

Comments

Compare to the dual g.f. of A219229:
exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*(1 + x^n)^k) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 25*x^6 + 44*x^7 +...
where
log(A(x)) = x/1*((1+x*(1+x))*(1+x^2*(1+x^2))*(1+x^3*(1+x^3))*...) +
x^2/2*((1+x^2*(1+x)^2)*(1+x^4*(1+x^2)^2)*(1+x^6*(1+x^3)^2)*...) +
x^3/3*((1+x^3*(1+x)^3)*(1+x^6*(1+x^2)^3)*(1+x^9*(1+x^3)^3)*...) +
x^4/4*((1+x^4*(1+x)^4)*(1+x^8*(1+x^2)^4)*(1+x^12*(1+x^3)^4)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 11*x^4/4 + 26*x^5/5 + 39*x^6/6 + 57*x^7/7 + 99*x^8/8 + 142*x^9/9 + 208*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*prod(k=1,n\m,(1+x^(m*k)*(1+x^k+x*O(x^n))^m )))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

Conjecture: a(n) ~ c * d^n, where d = A060006 = 1.3247179572447... is the real root of the equation d*(d^2-1) = 1 and c = 43328430766.390... . - Vaclav Kotesovec, Apr 09 2016

A230159 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=6.

Original entry on oeis.org

1, 1, 3, 4, 7, 2, 4, 1, 3, 8, 4, 0, 1, 5, 1, 9, 4, 9, 2, 6, 0, 5, 4, 4, 6, 0, 5, 4, 5, 0, 6, 4, 7, 2, 8, 4, 0, 2, 7, 9, 6, 6, 7, 2, 2, 6, 3, 8, 2, 8, 0, 1, 4, 8, 5, 9, 2, 5, 1, 4, 9, 5, 5, 1, 6, 6, 8, 2, 3, 6, 8, 9, 3, 9, 9, 9, 8, 4, 2, 6, 7, 1, 2, 7, 9, 6, 8
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=6.

Examples

			1.1347241384015194926054460545064728402796672263828014859...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,6);
  • Mathematica
    Root[x^6 - x - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230160 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=7.

Original entry on oeis.org

1, 1, 1, 2, 7, 7, 5, 6, 8, 4, 2, 7, 8, 7, 0, 5, 4, 7, 0, 6, 2, 9, 7, 0, 4, 0, 2, 0, 5, 7, 1, 0, 9, 2, 9, 3, 5, 6, 0, 6, 8, 5, 9, 2, 7, 1, 8, 5, 5, 2, 8, 3, 6, 8, 1, 4, 8, 5, 7, 0, 1, 6, 2, 8, 0, 0, 7, 1, 6, 6, 3, 3, 2, 5, 7, 9, 5, 2, 8, 4, 4, 3, 4, 5, 9, 2, 7
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=7.

Examples

			1.1127756842787054706297040205710929356068592718552836814...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,7);
  • Mathematica
    Root[x^7 - x - 1, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230161 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=8.

Original entry on oeis.org

1, 0, 9, 6, 9, 8, 1, 5, 5, 7, 7, 9, 8, 5, 5, 9, 8, 1, 7, 9, 0, 8, 2, 7, 8, 9, 6, 7, 1, 6, 7, 5, 3, 7, 0, 8, 9, 5, 9, 2, 5, 3, 0, 1, 0, 8, 2, 1, 2, 7, 8, 6, 7, 1, 3, 8, 1, 2, 3, 2, 8, 8, 5, 1, 2, 4, 8, 5, 5, 8, 9, 8, 0, 5, 9, 9, 0, 1, 8, 4, 9, 3, 4, 7, 2, 2, 0
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=8.

Examples

			1.0969815577985598179082789671675370895925301082127867138...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,8);
  • Mathematica
    Root[x^8 - x - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)

A230162 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=9.

Original entry on oeis.org

1, 0, 8, 5, 0, 7, 0, 2, 4, 5, 4, 9, 1, 4, 5, 0, 8, 2, 8, 3, 3, 6, 8, 9, 5, 8, 6, 4, 0, 9, 7, 3, 1, 4, 2, 3, 4, 0, 5, 0, 6, 5, 3, 6, 3, 1, 0, 3, 0, 8, 9, 6, 5, 8, 1, 4, 6, 8, 6, 1, 5, 5, 3, 3, 3, 6, 5, 1, 8, 0, 4, 9, 9, 4, 0, 1, 1, 5, 7, 1, 9, 9, 7, 4, 1, 9, 3
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=9.

Examples

			1.0850702454914508283368958640973142340506536310308965814...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,9);
  • Mathematica
    Root[(#^9-#-1)&, 1] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[x/.FindRoot[x^9-x-1==0,{x,1},WorkingPrecision->100]][[1]] (* Harvey P. Dale, Jul 31 2017 *)

A253924 Decimal expansion of Padovan factorial constant.

Original entry on oeis.org

1, 2, 5, 3, 7, 3, 6, 8, 3, 1, 3, 1, 5, 3, 7, 2, 0, 8, 8, 3, 8, 9, 9, 7, 8, 6, 4, 3, 1, 1, 9, 0, 3, 0, 3, 5, 0, 7, 9, 6, 8, 5, 3, 3, 8, 0, 0, 6, 7, 1, 2, 3, 1, 2, 4, 0, 2, 4, 1, 8, 0, 9, 8, 1, 3, 8, 0, 1, 0, 8, 3, 4, 9, 5, 3, 1, 8, 0, 3, 3, 7, 1, 0, 5, 3, 3, 1, 7, 1, 6, 1, 6, 9, 0, 4, 0, 0, 3, 8, 1, 0, 8, 7, 6, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2015

Keywords

Comments

The Padovan factorial constant is associated with the Padovan factorial A126772.

Examples

			1.25373683131537208838997864311903035079685338006712312402418098138...
		

Crossrefs

Formula

Equals limit n->infinity A126772(n) / (d^(n/2) * r^(n^2/2)), where r = 1.324717957244746025960908854478... (see A060006) is the root of the equation r^3 = r + 1, d = 0.3936412824011163853866584484465616545579227324... is the root of the equation 1 + 7*d + 184*d^2 - 529*d^3 = 0.

A333180 G.f.: Sum_{k>=1} (k * x^(k^2) * Product_{j=1..k} (1 + x^j)).

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 2, 2, 0, 3, 3, 3, 6, 3, 3, 3, 4, 4, 4, 8, 8, 8, 8, 8, 4, 9, 9, 5, 10, 10, 15, 15, 15, 15, 15, 15, 16, 16, 11, 17, 17, 18, 24, 24, 24, 30, 30, 30, 30, 31, 31, 31, 32, 26, 33, 34, 41, 41, 42, 49, 49, 56, 56, 56, 64, 64, 57, 65, 58, 59, 67, 68
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[n*x^(n^2)*Product[1+x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 0; Do[p = Expand[p*(1 + x^k)*x^(2*k - 1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += k*p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ c * A333198^sqrt(n), where c = 0.3836313809149103736315...
Limit_{n->infinity} a(n) / A333181(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885...

A006888 a(n) = a(n-1) + a(n-2)*a(n-3) for n > 2 with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 11, 26, 81, 367, 2473, 32200, 939791, 80570391, 30341840591, 75749670168872, 2444729709746709953, 2298386861814452020993305, 185187471463742319884263934176321, 5618934645754484318302453706799174724040986
Offset: 0

Views

Author

Keywords

Comments

Tends towards something like 1.60119...^(1.3247...^n) where 1.3247... = (1/2+sqrt(23/108))^(1/3)+(1/2-sqrt(23/108))^(1/3) is the smallest Pisot-Vijayaraghavan number A060006. Any four consecutive terms are pairwise coprime. - Henry Bottomley, Sep 25 2002

Examples

			From _Muniru A Asiru_, Jan 28 2018: (Start)
a(3) = a(2) + a(1) * a(0) = 1 + 1 * 1 = 2.
a(4) = a(3) + a(2) * a(1) = 2 + 1 * 1 = 3.
a(5) = a(4) + a(3) * a(2) = 3 + 2 * 1 = 5.
a(6) = a(5) + a(4) * a(3) = 5 + 3 * 2 = 11.
a(7) = a(6) + a(5) * a(4) = 11 + 5 * 3 = 26.
...
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • GAP
    a := [1,1,1];; for n in [4..35] do a[n] := a[n-1] + a[n-2] * a[n-3]; od; a; # Muniru A Asiru, Jan 28 2018
  • Maple
    a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n=2 then 1 elif n>=3 then procname(n-1) + procname(n-2) * procname(n-3) fi; end:
    seq(a(n), n=0..35); # Muniru A Asiru, Jan 28 2018
  • Mathematica
    a=1;b=1;c=1;lst={a,b,c};Do[d=a*b+c;AppendTo[lst,d];a=b;b=c;c=d,{n,2*4!}];lst  (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *)
    Nest[Append[#, Last[#] + Times @@ #[[-3 ;; -2]]] &, {1, 1, 1}, 17] (* Michael De Vlieger, Jan 23 2018 *)
    nxt[{a_,b_,c_}]:={b,c,c+b*a}; NestList[nxt,{1,1,1},20][[All,1]] (* Harvey P. Dale, Feb 03 2021 *)

Formula

Limit_{n->infinity} a(n)/(a(n-1)*a(n-5)) = 1 agrees with lim_{n->infinity} a(n) = c^(P^n) (c=1.60119..., P=PisotV) since PisotV is real root of x^3-x-1 and thus a root of x^5-x^4-1 because x^5-x^4-1 = (x^3-x-1)*(x^2-x+1) and c^(P^n)/(c^(P^(n-1))*c^(P^(n-5))) = c^(P^(n-5)*(P^5-P^4-1)). - Gerald McGarvey, Aug 14 2004

Extensions

More terms from Michel ten Voorde Apr 11 2001
Typo in Mathematica code corrected by Vincenzo Librandi, Jun 09 2013
Definition clarified by Matthew Conroy, Jan 23 2018

A205579 a(n) = round(r^n) where r is the smallest Pisot number (real root r=1.3247179.. of x^3-x-1).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289, 727653, 963935, 1276942, 1691588, 2240877, 2968530, 3932465
Offset: 0

Views

Author

Joerg Arndt, Jan 29 2012

Keywords

Crossrefs

Cf. A112639 (definition using floor() instead of round()).
Cf. A060006 (decimal expansion of r=1.32471795724475...).

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3),{x,0,100}],x] (* Vincenzo Librandi, Aug 19 2012 *)
    r = Root[x^3-x-1, 1]; Table[Round[r^i], {i,0,100 }] (* Jwalin Bhatt, Mar 27 2025 *)
  • PARI
    default(realprecision, 110);
    default(format, "g.15");
    r=real(polroots(x^3-x-1)[1])
    v=vector(66, n, round(r^(n-1)) )
    
  • PARI
    Vec((1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3)+O(x^66))

Formula

G.f.: (1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3).
From Jwalin Bhatt, Mar 26 2025: (Start)
a(n) = round(((1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3))^n).
a(n) = a(n-2) + a(n-3) for n>=13. (End)

A231691 Cardinalities of the symmetric operad of dotted red and white trees.

Original entry on oeis.org

1, 6, 74, 1476, 41032, 1464672, 63865328, 3290120832, 195537380704, 13169097667584, 991181618539136, 82450282595311104, 7511417235983147008, 743790032122343820288, 79541198937597284060672, 9136079502141558495310848, 1121720442822518015112749056, 146607501639123412303738884096, 20322509742114322789584125210624, 2978025324234142178848508363882496
Offset: 1

Views

Author

N. J. A. Sloane, Nov 14 2013

Keywords

Examples

			A(x) = x + 6*x^2/2! + 74*x^3/3! + 1476*x^4/4! + 41032*x^5/5! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(y=-x-ln((1+x)/(1+3*x+x^2)),x),y,21):
    seq(coeff(S,y,n)*n!,n=1..21); # Robert Israel, Sep 27 2018
  • Mathematica
    terms = 20; (CoefficientList[InverseSeries[Log[x^2 + 3x + 1] - Log[1+x] - x + O[x]^(terms+1)], x]*Range[0, terms]!) // Rest (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
  • PARI
    N=21; x = 'x + O('x^N); Vec(serlaplace(serreverse(log(x^2+3*x+1) - log(1+x) - x))) \\ Gheorghe Coserea, Jan 18 2017

Formula

E.g.f. A(x) satisfies -A(x) - g(-A(x)) = x where g is the E.g.f. of A052878. - Gheorghe Coserea, Jan 18 2017, edited by Robert Israel, Sep 27 2018
a(n) ~ sqrt((5 + 7*s + 3*s^2) / (7 + 13*s + 5*s^2)) * n^(n-1) / ((log((1+3*s+s^2)/(1+s))-s)^(n - 1/2) * exp(n)), where s = A060006 - 1 = -1 + (27/2 - 3*sqrt(69)/2)^(1/3)/3 + ((9 + sqrt(69))/2)^(1/3)/3^(2/3). - Vaclav Kotesovec, Apr 21 2020

Extensions

Offset changed and more terms from Gheorghe Coserea, Jan 15 2017
Previous Showing 31-40 of 75 results. Next