cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A333181 G.f.: Sum_{k>=1} (k * x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 2, 2, 2, 2, 0, 0, 3, 3, 3, 6, 3, 3, 3, 0, 4, 4, 4, 8, 8, 8, 8, 8, 4, 4, 9, 5, 5, 10, 10, 15, 15, 15, 15, 15, 15, 10, 16, 11, 11, 17, 12, 18, 24, 24, 24, 30, 30, 30, 30, 24, 31, 31, 25, 26, 26, 27, 34, 41, 35, 42, 49, 49, 56, 56, 56, 56, 64
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[n*x^(n*(n+1))*Product[1+x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 0; Do[p = Expand[p*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += k*p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ c * A333198^sqrt(n), where c = 0.2895947615240435716456...
Limit_{n->infinity} A333180(n) / a(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885...

A347178 Decimal expansion of imaginary part of (i + (i + (i + (i + ...)^(1/3))^(1/3))^(1/3))^(1/3), where i is the imaginary unit.

Original entry on oeis.org

3, 4, 1, 1, 6, 3, 9, 0, 1, 9, 1, 4, 0, 0, 9, 6, 6, 3, 6, 8, 4, 7, 4, 1, 8, 6, 9, 8, 5, 5, 5, 2, 4, 1, 2, 8, 4, 4, 5, 5, 9, 4, 2, 9, 0, 9, 4, 8, 9, 9, 9, 2, 8, 8, 9, 0, 1, 8, 6, 4, 3, 0, 3, 3, 1, 9, 9, 4, 8, 3, 3, 9, 3, 4, 3, 4, 9, 9, 0, 1, 0, 5, 4, 0, 8, 6, 6, 0, 2, 1, 8, 9, 3, 1, 0, 2, 5, 6, 4, 1, 4, 7, 7, 9, 6, 6, 5, 9, 3, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Examples

			0.3411639019140096636847418698555241284...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[((29 + 3 Sqrt[93])^(1/3) - 2^(1/3))/(2 (3 (9 + Sqrt[93]))^(1/3)), 10, 110][[1]]
  • PARI
    ((29 + 3*sqrt(93))^(1/3) - 2^(1/3))/(2*(3*(9 + sqrt(93)))^(1/3)) \\ Michel Marcus, Aug 21 2021

Formula

Equals -sinh(log((-3*sqrt(3) + sqrt(31))/2)/3)/sqrt(3). - Vaclav Kotesovec, Sep 29 2024

A374002 Decimal expansion of the positive real root of x^6 - 2*x^5 + x^4 - x^2 + x - 1.

Original entry on oeis.org

1, 5, 6, 1, 7, 5, 2, 0, 6, 7, 7, 2, 0, 2, 9, 7, 2, 9, 4, 7, 0, 2, 9, 9, 5, 3, 6, 4, 0, 6, 0, 7, 2, 3, 7, 8, 0, 7, 9, 0, 8, 4, 7, 2, 8, 6, 9, 4, 7, 2, 7, 6, 6, 4, 2, 8, 4, 6, 2, 8, 4, 7, 8, 3, 9, 4, 6, 2, 5, 2, 2, 4, 1, 0, 4, 3, 9, 4, 2, 9, 4, 4, 4, 9, 6, 2, 4, 4, 0, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 25 2024

Keywords

Comments

Eighth smallest Pisot-Vijayaraghavan number.

Examples

			1.561752067720297294702995364060723780790847286947...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^6 - 2*#^5 + #^4 - #^2 + # - 1 &, 2], 10, 100]]

A374003 Decimal expansion of the positive real root of x^8 - x^7 - x^6 + x^2 - 1.

Original entry on oeis.org

1, 5, 7, 3, 6, 7, 8, 9, 6, 8, 3, 9, 3, 5, 1, 6, 9, 8, 8, 7, 7, 4, 2, 5, 1, 4, 1, 8, 6, 2, 9, 3, 2, 1, 4, 6, 7, 8, 1, 2, 7, 0, 4, 0, 6, 1, 5, 0, 7, 9, 1, 3, 4, 0, 8, 9, 3, 7, 2, 7, 4, 3, 7, 0, 0, 5, 1, 2, 1, 1, 2, 9, 7, 4, 4, 8, 7, 9, 0, 4, 7, 1, 8, 8, 1, 5, 4, 8, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Jun 25 2024

Keywords

Comments

Tenth smallest Pisot-Vijayaraghavan number.

Examples

			1.5736789683935169887742514186293214678127040615079...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^8 - #^7 - #^6 + #^2 - 1 &, 2], 10, 100]]

A072117 Continued fraction expansion of smallest Pisot-Vijayaraghavan number (positive root of x^3 = x + 1 ).

Original entry on oeis.org

1, 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, 3, 1, 8, 2, 1, 1, 14, 1, 1, 2, 1, 1, 1, 3, 1, 10, 4, 40, 1, 1, 2, 4, 9, 1, 1, 3, 3, 3, 2, 1, 17, 7, 5, 1, 1, 4, 1, 1, 3, 5, 1, 2, 6, 2, 2, 1, 1, 1, 4, 1, 3, 1, 2, 6, 5, 6, 49, 3, 7, 1, 4, 2, 12, 4, 31, 1, 47, 1, 1, 1, 8, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Examples

			This number = 1.32471795724474602....
		

Crossrefs

Cf. A060006 (decimal expansion).

Programs

  • PARI
    \p150 contfrac(solve(X=1,2,X^3-X-1))

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024

A176476 Partial sums of A012814.

Original entry on oeis.org

0, 1, 6, 27, 113, 464, 1896, 7738, 31571, 128800, 525455, 2143647, 8745216, 35676948, 145547524, 593775045, 2422362078, 9882257735, 40315615409, 164471408184, 670976837020, 2737314167774, 11167134898975, 45557394660800, 185855747875875, 758216295635151
Offset: 0

Views

Author

Carmine Suriano, Apr 18 2010

Keywords

Comments

Old name was "a(n) is the minimum integer that can be expressed as the sum of n Padovan numbers (see A000931)".
Lim_{n -> infinity} a(n+1)/a(n) = p^5 = 4.0795956..., where p is the plastic constant (A060006).

Examples

			a(5) = A000931(2) + A000931(7) + A000931(12) + A000931(17) + A000931(22) + A000931(27) = 0 + 1 + 5 + 21 + 86 + 351 = 464.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-9,5,-1},{0,1,6,27},30] (* Harvey P. Dale, Feb 08 2025 *)
  • PARI
    a(n) = my(v=vector(n+1), u=[0,1,6,27]); for(k=1, n+1, v[k]=if(k<=4, u[k], 5*v[k-1] - 4*v[k-2] + v[k-3] + 1)); v[n+1] \\ Jianing Song, Feb 04 2019

Formula

a(n) = A012855(n+3) - 1. a(n) = 6*a(n-1) - 9*a(n-2) + 5*a(n-3) - a(n-4). - R. J. Mathar, Oct 18 2010
G.f.: x/(1 - 6*x + 9*x^2 - 5*x^3 + x^4). - Colin Barker, Feb 03 2012
From Jianing Song, Feb 04 2019: (Start)
a(n+3) = 5*a(n+2) - 4*a(n+1) + a(n) + 1.
a(n) = Sum_{k=0..n} A012814(k) = Sum_{k=0..n} A000931(5*k+2). (End)

Extensions

New name, more terms and a(0) = 0 prepended by Jianing Song, Feb 04 2019

A248049 a(n) = (a(n-1) + a(n-2)) * (a(n-2) + a(n-3)) / a(n-4) with a(0) = 2, a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

2, 1, 1, 1, 2, 6, 24, 240, 3960, 184800, 33033000, 26125799700, 219429008298500, 31064340573760168675, 206377779224083011749949745, 245390990689739612867279321757020455, 230795626149641527446533813473152766756062242744
Offset: 0

Views

Author

Michael Somos, Sep 30 2014

Keywords

Comments

It seems that degrees of factors when using [2,1,1,y] as initial condition are given by A233522. - F. Chapoton, May 21 2020
It seems also that degrees (w.r.t. x) of factors when using [2,1,x,y] as initial condition are given by A247907. - F. Chapoton, Jan 03 2021
Somos conjectures that log(a(n)) ~ 1.25255*c^n, where c = A060006. - Bill McEachen, Oct 11 2022

Crossrefs

Programs

  • Maple
    a[0]:= 2: a[1]:= 1: a[2]:= 1: a[3]:= 1:
    for n from 4 to 20 do
    a[n] := (a[n-1] + a[n-2]) * (a[n-2] + a[n-3]) / a[n-4]
    od:
    seq(a[i],i=0..20); # Robert Israel, Mar 18 2020
  • PARI
    {a(n) = if( n<0, n=4-n); if( n<4, (n==0)+1, (a(n-1) + a(n-2)) * (a(n-2) + a(n-3)) / a(n-4))};

Formula

a(n) = a(4-n) for all n in Z.
a(n) * a(n+4) = (a(n+1) + a(n+2)) * (a(n+2) + a(n+3)) for all n in Z.

A254232 Product of Perrin numbers A001608(2) * ... * A001608(n).

Original entry on oeis.org

2, 6, 12, 60, 300, 2100, 21000, 252000, 4284000, 94248000, 2733192000, 106594488000, 5436318888000, 369669684384000, 33270271594560000, 3959162319752640000, 625547646520917120000, 130739458122871678080000, 36214829900035454828160000
Offset: 2

Views

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[SeriesCoefficient[(3-x^2)/(1-x^2-x^3),{x,0,k}],{k,2,n}], {n,2,20}]
  • Python
    A254232_list, a, b, c, d = [2], 3, 0, 2, 2
    for _ in range(200):
        a, b, c = b, c, a+b
        d *= c
        A254232_list.append(d) # Chai Wah Wu, Jan 28 2015

Formula

a(n) ~ c * r^(n*(n+1)/2), where r = A060006 = 1.324717957244746025960908854478... is the root of the equation r^3 = r + 1, c = 0.81845731383668335747954234022593868885066763327809025622515304041339344876... .

A276519 Expansion of Product_{k>=1} 1/(1 - x^(2*k) - x^(3*k)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 17, 19, 34, 37, 61, 75, 112, 138, 209, 256, 376, 478, 675, 866, 1222, 1566, 2175, 2830, 3873, 5055, 6900, 9011, 12213, 16045, 21599, 28429, 38191, 50290, 67341, 88884, 118669, 156751, 209018, 276200, 367734, 486376, 646688
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[1/Product[1-x^(2*k)-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * p / r^n, where r = A075778 = 1/A060006 = 0.7548776662466927600495... is the real root of the equation r^3 + r^2 - 1 = 0, p = Product_{n>1} 1/(1 - r^(2*n) - r^(3*n)) = 3.820450591662541853... and c = 0.41149558866264576338190038... is the real root of the equation -1 + 8*c - 23*c^2 + 23*c^3 = 0.

A329974 Beatty sequence for the real solution x of 1/x + 1/(1+x+x^2) = 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2020

Keywords

Comments

Let x be the real solution of 1/x + 1/(1+x+x^2) = 1. Then (floor(n*x)) and (floor(n*(x^2 + x + 1))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.

Crossrefs

Cf. A329825, A060006, A329975 (complement).

Programs

  • Mathematica
    Solve[1/x + 1/(1 + x + x^2) == 1, x]
    u = 1/3 (27/2 - (3 Sqrt[69])/2)^(1/3) + (1/2 (9 + Sqrt[69]))^(1/3)/3^(2/3);
    u1 = N[u, 150]
    RealDigits[u1, 10][[1]]  (* A060006 *)
    Table[Floor[n*u], {n, 1, 50}]              (* A329974 *)
    Table[Floor[n*(1 + u + u^2)], {n, 1, 50}]  (* A329975 *)
    Plot[1/x + 1/(1 + x + x^2) - 1, {x, -2, 2}]

Formula

a(n) = floor(n*x), where x = 1.324717... is the constant in A060006.
Previous Showing 41-50 of 75 results. Next