cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A294958 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*((k-2)^2+k)/2).

Original entry on oeis.org

1, 1, 3, 9, 28, 75, 198, 494, 1243, 3061, 7500, 18055, 43057, 101292, 236178, 545218, 1248480, 2835059, 6390360, 14298631, 31778782, 70168935, 153993321, 335977369, 728962258, 1573189113, 3377881482, 7217395643, 15348900996, 32494548816, 68494383520, 143773075158, 300568066729
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2017

Keywords

Comments

Euler transform of A060354.

Crossrefs

Programs

  • Maple
    N:=100:
    S:= series(mul(1/(1 - x^k)^(k*((k-2)^2+k)/2),k=1..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Nov 12 2017
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A060354(k).
a(n) ~ exp(2*Zeta'(-1) + 3*Zeta(3) / (8*Pi^2) - Pi^16 / (1036800000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - 2*Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3)/2 + (-Pi^12 / (3600000 * 2^(2/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(2/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(4/5) * 3^(2/5) * Zeta(5)^(7/5)) + 2^(1/5) * Zeta(3) / (3*Zeta(5))^(2/5)) * n^(2/5) - (Pi^4 / (60 * 2^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5*(3*Zeta(5))^(1/5) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(53/400) / (2^(47/200) * sqrt(5*Pi) * n^(253/400)). - Vaclav Kotesovec, Nov 12 2017

A294959 Expansion of Product_{k>=1} (1 + x^k)^(k*((k-2)^2+k)/2).

Original entry on oeis.org

1, 1, 2, 8, 23, 64, 160, 397, 968, 2372, 5714, 13617, 32007, 74396, 171222, 390629, 883922, 1984631, 4423528, 9790146, 21524829, 47027558, 102135967, 220565018, 473743833, 1012274948, 2152271718, 4554344649, 9593260912, 20118418061, 42012556671, 87375161720, 181001416773
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2017

Keywords

Comments

Weigh transform of A060354.

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(((i-2)^2+i)*i/2, j)*g(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 12 2017
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A060354(k).
a(n) ~ exp(-2401 * Pi^16 / (3499200000000 * Zeta(5)^3) + 49 * Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - 2*Zeta(3)^2 / (25*Zeta(5)) + (-343*Pi^12 / (810000000 * 2^(3/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (750 * 2^(3/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (360000 * 2^(1/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + (3/2)^(1/5) * Zeta(3) / (5*Zeta(5))^(2/5)) * n^(2/5) - (7*Pi^4 / (180 * 2^(4/5) * 3^(1/5) * (5*Zeta(5))^(3/5))) * n^(3/5) + (3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(69/80) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 12 2017

A335633 Number of ordered ways of writing the n-th n-gonal number as a sum of n n-gonal numbers (with 0's allowed).

Original entry on oeis.org

1, 1, 3, 6, 5, 95, 336, 2597, 26832, 197577, 1847800, 14621101, 129754956, 1146534701, 12342194879, 161225146370, 2464561564936, 39642413790129, 620059254486798, 9430493858327959, 136438759335452360, 1881721996407396801, 24999081626667425376, 321601467988647184779
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2020

Keywords

Examples

			a(3) = 6 because the third triangular number is 6 and we have [6, 0, 0], [0, 6, 0], [0, 0, 6], [3, 3, 0], [3, 0, 3] and [0, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 0, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 0, 23}]
  • PARI
    p(n,k) = {k * (k * (n - 2) - n + 4) / 2}
    a(n) = {my(m=p(n,n)); polcoef((sum(k=0, n, x^p(n,k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020

Formula

a(n) = [x^p(n,n)] (Sum_{k=0..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A335634 Number of ordered ways of writing the n-th n-gonal number as a sum of n nonzero n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 0, 1, 30, 180, 700, 3780, 11844, 50610, 325820, 5803380, 126594910, 2114901789, 28282722650, 323420067880, 3190581939996, 29336527986960, 245438739897312, 1967485926594030, 16000631392009320, 184418174847183508, 4054670001158799616, 111835386569787369559
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2020

Keywords

Examples

			a(4) = 1 because the fourth square is 16 and we have [4, 4, 4, 4].
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 1, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 1, 24}]]
  • PARI
    p(n,k) = {k * (k * (n - 2) - n + 4) / 2}
    a(n) = {my(m=p(n,n)); polcoef((sum(k=1, n, x^p(n,k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020

Formula

a(n) = [x^p(n,n)] (Sum_{k=1..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A384243 a(n) = 2^(n-6)*n*(n^3 - 6*n^2 + 19*n - 14).

Original entry on oeis.org

0, 0, 1, 6, 30, 140, 600, 2352, 8512, 28800, 92160, 281600, 827904, 2356224, 6522880, 17633280, 46694400, 121438208, 310837248, 784465920, 1954938880, 4816896000, 11747721216, 28386000896, 68010639360, 161690419200, 381681664000, 895098028032, 2086448136192, 4836200284160
Offset: 0

Views

Author

Enrique Navarrete, May 23 2025

Keywords

Comments

a(n) is the number of strings of length n defined on {0, 1, 2, 3} that have exactly two 2's, zero or two 3's, and have no restriction on the number of 0's and 1's.

Examples

			a(4) = 30 since the strings are the 6 permutations of 2233, the 6 permutations of 1122, the 6 permutations of 0022, and the 12 permutations of 0122.
		

Crossrefs

Programs

  • Mathematica
    A384243[n_] := 2^(n-6)*n*(n-1)*(n*(n-5)+14); Array[A384243, 30, 0] (* or *)
    LinearRecurrence[{10, -40, 80, -80, 32}, {0, 0, 1, 6, 30}, 30] (* Paolo Xausa, May 27 2025 *)

Formula

E.g.f.: exp(2*x)*(x^2/2 + x^4/4).
G.f.: x^2*(1 - 4*x + 10*x^2)/(1 - 2*x)^5. - Stefano Spezia, May 23 2025

A122061 First pentagonal number, 2nd hexagonal number, 3rd heptagonal number, 4th octagonal number and then repeat the same pattern: 5th pentagonal, 6th hexagonal, 7th heptagonal, 8th octagonal, etc.

Original entry on oeis.org

1, 6, 18, 40, 35, 66, 112, 176, 117, 190, 286, 408, 247, 378, 540, 736, 425, 630, 874, 1160, 651, 946, 1288, 1680, 925, 1326, 1782, 2296, 1247, 1770, 2356, 3008, 1617, 2278, 3010, 3816, 2035, 2850, 3744, 4720, 2501, 3486, 4558, 5720, 3015, 4186, 5452
Offset: 1

Views

Author

Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006

Keywords

Comments

From a quiz.

References

  • A. Wareham, Test Your Brain Power, Ward Lock Ltd (1995).

Crossrefs

Cf. A060354.

Programs

  • Mathematica
    fn[n_]:=Module[{r=Mod[n,4]},Which[r==1,(n(3n-1))/2,r==2,(n(4n-2))/2,r==3,(n(5n-3))/2,r==0,(n(6n-4))/2]]; Array[fn,50] (* or *) LinearRecurrence[ {0,0,0,3,0,0,0,-3,0,0,0,1},{1,6,18,40,35,66,112,176,117,190,286,408},50] (* Harvey P. Dale, Mar 01 2015 *)
  • PARI
    for(n=1,60,m=(n+3)%4;print1(n*((m+3)*n-m-1)/2,","))

Formula

a(n) = n*(3*n-1)/2 if n=1 mod 4 or n*(4*n-2)/2 if n=2 mod 4 or n*(5*n-3)/2 if n=3 mod 4 or n*(6*n-4)/2 if n=0 mod 4
a(n)=3*a(n-4)-3*a(n-8)+a(n-12) for n>11. - Harvey P. Dale, Mar 01 2015

A129699 Least nonnegative m such that P(n+3,n) + P(n+3,m) is prime where P(k,n) is n-th k-gonal number, or -1 if no such value exists.

Original entry on oeis.org

2, 1, 0, 4, 2, 2, 4, 4, 2, 4, 3, 6, 73, 4, 3, 16, 9, 6, 7, 2, 17, 10, 3, 2, 10, 2, 36, 58, 9, 2, 7, 4, 6, 82, 3, 2, 25, 4, 11, 10, 2, 6, 43, 2, 14, 46, 11, 38, 37, 2, 32, 130, 14, 2, 28, 2, 5, 28, 4, 14, 37, 16, 24, 16, 2, 2, 40, 4, 2, 10, 8, 6, 46, 22, 3, 28, 5, 18, 16, 2, 26, 10, 19, 12, 10, 8
Offset: 0

Views

Author

Jonathan Vos Post, Jun 01 2007

Keywords

Comments

Define array A[k,n] for k>2, n>=0, where A[k,n] = n-th k-gonal number = k((n-2)*k - (n-4))/2. Then define array B[k,n] = least m such that the A[k,n] + m-th k-gonal number is prime. This sequence is the main diagonal of B. The array B[k,n] begins: k.|.B[k,n] 3.|..2.1.0.1.1.7.4.1.1.7.3... 4.|.-1.2.1.2.1.2.5.2.3.4.1... 5.|..2.3.0.1.1.3.4.1.4.3... 6.|.-1.1.1.4.1.4.4.2.7.4... 7.|..2.3.0.1.2.3.7.1.1.4... 8.|.-1.4.3.2.1.2.1.4.3.2... B[4,0] = -1 because 0th 4-gonal number is 0th square = 0 and 0 + c^2 cannot be prime for any integer c. B[5,6] = 4 because 6th + 5th pentagonal numbers = 51 + 22 = 73 is prime. B[8,2] = 3 because 3rd + 2nd octagonal numbers = 21 + 8 = 29 is prime.
The sequence of associated primes starts 3, 2, 5, 43, 41, 73, 157, 227, 271, 433, 541, 857, 35107, 1193, 1427,... - R. J. Mathar, Jun 12 2008

Crossrefs

Programs

  • Maple
    P := proc(k,n) n/2*((k-2)*n-k+4) ; end: A129699 := proc(n) for m from 0 to 100000 do if isprime(P(n+3,n)+P(n+3,m)) then RETURN(m) ; fi ; od: RETURN(-1) ; end: for n from 0 to 200 do printf("%d,",A129699(n)) ; od: # R. J. Mathar, Jun 12 2008

Formula

a(n) = min{m: m-th (n+3)-gonal number + n-th (n+3)-gonal number is prime}.

Extensions

Corrected and extended by R. J. Mathar, Jun 12 2008

A228399 The number of permutations of length n sortable by 2 cut-and-paste moves.

Original entry on oeis.org

1, 2, 6, 24, 120, 577, 2208, 6768, 17469, 39603, 81272, 154225, 274802, 464985, 753556, 1177362, 1782687, 2626731, 3779196, 5323979, 7360972, 10007969, 13402680, 17704852, 23098497, 29794227, 38031696, 48082149, 60251078, 74880985, 92354252, 113096118
Offset: 1

Views

Author

Vincent Vatter, Aug 21 2013

Keywords

Examples

			The shortest permutations which cannot be sorted by 2 cut-and-paste moves are of length 6.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1/x) (-1 + (x^11 - 5 x^10 - 2 x^9 + 44 x^8 - 23 x^7 - 87 x^6 - 22 x^5 - 24 x^4 + 22 x^3 - 16 x^2 + 6 x - 1)/(x - 1)^7), {x,
       0, 40}], x] (* Bruno Berselli, Aug 22 2013 *)

Formula

G.f.: -1 + (x^11 - 5*x^10 - 2*x^9 + 44*x^8 - 23*x^7 - 87*x^6 - 22*x^5 - 24*x^4 + 22*x^3 - 16*x^2 + 6*x - 1)/(x - 1)^7.
a(n) = n! for 0 < n < 5; for n > 4, a(n) = -18 + n*(107*n^5 -1077*n^4 +2225*n^3 +12345*n^2 -61732*n +80532)/720. [Bruno Berselli, Aug 22 2013]

A228400 The number of permutations of length n sortable by 3 cut-and-paste moves.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 36757, 223898, 1055479, 3973264, 12530496, 34434065, 84883448, 191729212, 403095882, 798248632, 1502630530, 2708156958, 4700026333, 7891491375, 12868232903, 20444188490, 31730911273, 48222769794, 71900547943
Offset: 1

Views

Author

Vincent Vatter, Aug 21 2013

Keywords

Examples

			The shortest permutations that cannot be sorted by 3 cut-and-paste moves are of length 8.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2 x^19 + 28 x^17 - 90 x^16 + 31 x^15 - 329 x^14 + 2874 x^13 - 1487 x^12 - 13363 x^11 + 17425 x^10 + 8876 x^9 - 16945*x^8 - 8185 x^7 - 1326 x^6 - 48 x^5 - 120 x^4 + 66 x^3 - 31*x^2 + 8*x - 1)/(x - 1)^10, {x, 0, 40}], x] (* Bruno Berselli, Aug 23 2013 *)

Formula

G.f.: -x*(2*x^19 + 28*x^17 - 90*x^16 + 31*x^15 - 329*x^14 + 2874*x^13 - 1487*x^12 - 13363*x^11 + 17425*x^10 + 8876*x^9 - 16945*x^8 - 8185*x^7 - 1326*x^6 - 48*x^5 - 120*x^4 + 66*x^3 - 31*x^2 + 8*x - 1)/(x - 1)^10

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
Previous Showing 21-30 of 39 results. Next