A369288
Array read by antidiagonals: A(n,k) = the hypergraph Catalan number C_k(n), n >= 0, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 6, 5, 1, 1, 20, 57, 14, 1, 1, 70, 860, 678, 42, 1, 1, 252, 15225, 57200, 9270, 132, 1, 1, 924, 299880, 7043750, 5344800, 139968, 429, 1, 1, 3432, 6358044, 1112865264, 6327749750, 682612800, 2285073, 1430, 1, 1, 12870, 141858288, 203356067376, 11126161436292, 10411817136000, 118180104000, 39871926, 4862
Offset: 0
Array begins:
n/k| 1 2 3 4 5 ...
---+-----------------------------------------------------------------
0 | 1 1 1 1 1 ...
1 | 1 1 1 1 1 ...
2 | 2 6 20 70 252 ...
3 | 5 57 860 15225 299880 ...
4 | 14 678 57200 7043750 1112865264 ...
5 | 42 9270 5344800 6327749750 11126161436292 ...
6 | 132 139968 682612800 10411817136000 255654847841227632 ...
...
-
\\ here L(k,n) is k-th column of A060540 as g.f.
L(k,n)={sum(n=1, n, (n*k)!*x^n/(k!^n*n!), O(x*x^n))}
HypCatColGf(k,n)={my(p=L(k,n)); 1 + subst(p, x, serreverse(x^2/p))}
M(n,m=n+1)={Mat(vector(m, k, Col(HypCatColGf(k,n))))}
{ my(A=M(7,5)); for(i=1, matsize(A)[1], print(A[i,])) }
A370363
Number A(n,k) of partitions of [k*n] into n sets of size k having at least one set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 7, 1, 1, 0, 1, 1, 28, 45, 1, 1, 0, 1, 1, 103, 1063, 401, 1, 1, 0, 1, 1, 376, 22893, 74296, 4355, 1, 1, 0, 1, 1, 1384, 503751, 13080721, 8182855, 56127, 1, 1, 0, 1, 1, 5146, 11432655, 2443061876, 15237712355, 1305232804, 836353, 1, 1
Offset: 0
A(3,2) = 7: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 14|23|56, 15|26|34, 16|25|34.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 7, 28, 103, 376, ...
1, 1, 45, 1063, 22893, 503751, ...
1, 1, 401, 74296, 13080721, 2443061876, ...
-
A:= proc(n, k) option remember; `if`(k=0, signum(n), add(
(-1)^(n-j+1)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
A025037
Number of partitions of { 1, 2, ..., 5n } into sets of size 5.
Original entry on oeis.org
1, 1, 126, 126126, 488864376, 5194672859376, 123378675083039376, 5721809435651034101376, 470624547891733205872277376, 63887753000850674430367526069376, 13536281554808237495608549953475109376, 4280862577989659916223699531336456815269376
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..100 (term a(0) added by Sidney Cadot)
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 17.
-
[Factorial(5*n)/(Factorial(n)*Factorial(5)^n): n in [0..10]]; // Vincenzo Librandi, Jun 26 2012
-
Table[(5n)!/(n!(5!)^n),{n,0,10}] (* Vincenzo Librandi, Jun 26 2012 *)
-
[rising_factorial(n+1,4*n)/120^n for n in (0..15)] # Peter Luschny, Jun 26 2012
A322252
a(0) = 1 and a(n) = (5*n)!/(5!*n!^5) for n > 0.
Original entry on oeis.org
1, 1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, 26478825654361766400, 63805953776276649848625, 158421985022100255941485000, 402789797982510165934296910320, 1044048983553856888083223814102400, 2749848597736878877579660426025283000
Offset: 0
-
[1] cat [Factorial(5*n)/(120*Factorial(n)^5):n in [1..12]]; // Marius A. Burtea, Feb 18 2020
-
a[n_]:=(5*n)!/(5!*n!^5); Array[a, 20] (* or *) CoefficientList[Series[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125 x]/(120 x) , {x, 0, 20}], x] (* Stefano Spezia, Dec 01 2018 *)
A370366
Number A(n,k) of partitions of [k*n] into n sets of size k having no set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 9, 8, 0, 0, 1, 0, 34, 252, 60, 0, 0, 1, 0, 125, 5672, 14337, 544, 0, 0, 1, 0, 461, 125750, 2604732, 1327104, 6040, 0, 0, 1, 0, 1715, 2857472, 488360625, 2533087904, 182407545, 79008, 0, 0
Offset: 0
A(2,3) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 0, 2, 9, 34, 125, ...
0, 0, 8, 252, 5672, 125750, ...
0, 0, 60, 14337, 2604732, 488360625, ...
0, 0, 544, 1327104, 2533087904, 5192229797500, ...
-
A:= proc(n, k) `if`(k=0,`if`(n=0, 1, 0), add(
(-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
A370407
Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j.
Original entry on oeis.org
1, 2, 3, 4, 7, 29, 424, 22250, 4166012, 3228619112, 9836415861419, 148021077093705105, 9516162824804128833773, 3369338041967340627557507931, 5792066385997100947453116161699033, 55416753515944143275546728017602371379095
Offset: 0
-
a:= n-> add(`if`(j=n, 1, (j*(n-j))!/((n-j)!^j*j!)), j=0..n):
seq(a(n), n=0..15);
A025038
Number of partitions of { 1, 2, ..., 6n } into sets of size 6.
Original entry on oeis.org
1, 1, 462, 2858856, 96197645544, 11423951396577720, 3708580189773818399040, 2779202577056119960603777920, 4263127221846887596248598498826880, 12233832241625685631640659383106015132800, 61247286460823449786646954166350590676638060800
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 17.
-
Table[Pochhammer[n + 1, 5*n]/6!^n, {n, 0, 15}] (* Paolo Xausa, Aug 08 2024 *)
-
[rising_factorial(n+1,5*n)/720^n for n in (0..15)] # Peter Luschny, Jun 26 2012
A025040
Number of partitions of { 1, 2, ..., 8n } into sets of size 8.
Original entry on oeis.org
1, 1, 6435, 1577585295, 4148378852099625, 63805953776276649848625, 4012852078114749147678149338875, 814318942973348333484015877548157809375, 450538787986875167583433232345723106006796340625, 599167346385710947364525167684682505182168120225201390625
Offset: 0
-
Table[Pochhammer[n + 1, 7*n]/8!^n, {n, 0, 10}] (* Paolo Xausa, Aug 08 2024 *)
A025041
Number of partitions of { 1, 2, ..., 9n } into sets of size 9.
Original entry on oeis.org
1, 1, 24310, 37978905250, 893864677761055000, 158421985022100255941485000, 140413003088367308737750586624350000, 474750200441159213998774295008486246570750000, 5050927030108676304976606530597710043478228399030000000
Offset: 0
-
Table[Pochhammer[n + 1, 8*n]/9!^n, {n, 0, 10}] (* Paolo Xausa, Aug 08 2024 *)
A025042
Number of partitions of { 1, 2, ..., 10n } into sets of size 10.
Original entry on oeis.org
1, 1, 92378, 925166131890, 196056702961398759480, 402789797982510165934296910320, 5061324188732823772720935900249118313520, 286835743456312434671347570864365730919777702885760, 59034098562652855324502713832050720577190114808212674462486400
Offset: 0
-
Table[Pochhammer[n + 1, 9*n]/10!^n, {n, 0, 10}] (* Paolo Xausa, Aug 08 2024 *)
Comments