A067228
Number of rectangular standard Young tableaux with n cells.
Original entry on oeis.org
1, 2, 2, 4, 2, 12, 2, 30, 44, 86, 2, 1190, 2, 860, 12014, 26886, 2, 184758, 2, 3359202, 2771342, 117574, 2, 327618902, 701149022, 1485802, 828630662, 27350160662, 2, 808310933492, 2, 2979826568702, 291724349282, 259289582, 557214344578322, 2031957220875002, 2
Offset: 1
-
with(numtheory):
a:= n-> n! * add(mul(k!/(i+k)!, k=0..(n/i)-1), i=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 25 2012
-
a[n_] := n! * Sum[Product[k!/(i+k)!, {k, 0, n/i-1}], {i, Divisors[n]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *)
A321977
8-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 1430, 23371634, 1489877926680, 231471904322784840, 67867669180627125604080, 32103104214166146088869942000, 22081374992701950398847674830857600, 20535535214275361308250745082811167425600, 24486819823897171791550434989846505231774984000
Offset: 0
-
List([0..15],n->125411328000*Factorial(8*n)/Product([0..7],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[125411328000*Factorial(8*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
Table[125411328000 (8 n)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)! (n+6)! (n + 7)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)
A067231
Number of Young tableaux with n=i*j cells and type i*j matrices with i>=j.
Original entry on oeis.org
1, 1, 1, 3, 1, 6, 1, 15, 43, 43, 1, 595, 1, 430, 6007, 25455, 1, 92379, 1, 1679601, 1385671, 58787, 1, 163809451, 701149021, 742901, 414315331, 13675080331, 1, 404155466746, 1, 1489913284351, 145862174641, 129644791, 278607172289161, 1851800127304981, 1
Offset: 1
-
with(numtheory):
a:= n-> n!*add(mul(k!/(i+k)!, k=0..n/i-1),
i=select(d-> is(d>=sqrt(n)), divisors(n))):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 25 2012
-
a[n_] := n!*Sum[Product[k!/(i+k)!, {k, 0, n/i-1}], {i, Select[Divisors[n], # >= Sqrt[n]&]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
A211400
Rectangular array, read by upward diagonals: T(n,m) is the number of Young tableaux that can be realized as the ranks of the outer sums a_i + b_j where a = (a_1, ... a_n) and b = (b_1, ... b_m) are real monotone vectors in general position (all sums different).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 14, 36, 14, 1, 1, 42, 295, 295, 42, 1, 1, 132, 2583, 6660, 2583, 132, 1, 1, 429, 23580
Offset: 1
The vectors a = (0,2) and b = (0,4,5) give the outer sums
0 4 5 which have ranks 1 3 4
2 6 7 2 5 6
which is one of the five 2 X 3 Young tableaux.
One of the 18 3 X 3 tableaux that cannot be realized as a set of outer sums
is 1 2 6
3 5 7
4 8 9.
The array begins
1 1 1 1 1 1 1 1 1 ...
1 2 5 14 42 132 429 1430 4862 ... (A000108)
1 5 36 295 2583 23580 221680 ... (A255489)
1 14 295 6660 ...
1 42 2583 ...
1 132 23580 ...
1 429 221680 ...
1 1430 ...
1 4862 ...
...
A215287
Number of permutations of 0..floor((n*3-1)/2) on even squares of an n X 3 array such that each row and column of even squares is increasing.
Original entry on oeis.org
1, 3, 10, 30, 140, 420, 2310, 6930, 42042, 126126, 816816, 2450448, 16628040, 49884120, 350574510, 1051723530, 7595781050, 22787343150, 168212023980, 504636071940, 3792416540640, 11377249621920, 86787993910800, 260363981732400, 2011383287449200
Offset: 1
Some solutions for n=5:
0 x 4 0 x 5 1 x 3 0 x 1 0 x 3 1 x 4 0 x 2
x 3 x x 1 x x 0 x x 4 x x 2 x x 0 x x 1 x
1 x 5 2 x 6 2 x 5 2 x 3 1 x 6 2 x 5 3 x 5
x 7 x x 3 x x 6 x x 6 x x 5 x x 6 x x 6 x
2 x 6 4 x 7 4 x 7 5 x 7 4 x 7 3 x 7 4 x 7
-
[(n-(n div 2)+1)*Factorial(2*n-(n div 2)) / (Factorial(n-(n div 2) +1)^2*Factorial((n div 2))): n in [1..30]]; // Vincenzo Librandi, Oct 01 2018
-
T := (n, k) -> (n-k+1)*(2*n-k)!/((n-k+1)!^2*k!):
a := n -> T(n, floor(n/2)): seq(a(n), n = 1..23); # Peter Luschny, Sep 30 2018
-
Table[(n - Floor[n/2] + 1) (2 n - Floor[n/2])! / ((n -Floor[n/2] + 1)!^2 Floor[n/2]!), {n, 1, 30}] (* Vincenzo Librandi, Oct 01 2018 *)
A215290
Number of permutations of 0..floor((n*6-1)/2) on even squares of an nX6 array such that each row and column of even squares is increasing.
Original entry on oeis.org
1, 20, 420, 23100, 1051050, 85765680, 5703417720, 577185873264, 48236247979920, 5595404765670720, 545152292883918720, 69506917342699636800, 7562187114225380722800, 1033498905610802032116000
Offset: 1
Some solutions for n=4
..0..x..2..x..6..x....1..x..6..x..7..x....1..x..2..x..7..x....0..x..2..x..6..x
..x..1..x..3..x..5....x..0..x..2..x..4....x..0..x..4..x.10....x..3..x..5..x..7
..4..x..9..x.10..x....9..x.10..x.11..x....3..x..6..x..8..x....1..x..9..x.11..x
..x..7..x..8..x.11....x..3..x..5..x..8....x..5..x..9..x.11....x..4..x..8..x.10
A321716
Triangle read by rows: T(n,k) is the number of n X k Young tableaux, where 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 5, 42, 1, 1, 14, 462, 24024, 1, 1, 42, 6006, 1662804, 701149020, 1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560
Offset: 0
T(4,3) = 12! / ((6*5*4)*(5*4*3)*(4*3*2)*(3*2*1)) = 462.
Triangle begins:
1;
1, 1;
1, 1, 2;
1, 1, 5, 42;
1, 1, 14, 462, 24024;
1, 1, 42, 6006, 1662804, 701149020;
1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960;
-
A321716:= func< n,k | n eq 0 select 1 else Factorial(n*k)/(&*[ Round(Gamma(j+k)/Gamma(j)): j in [1..n]]) >;
[A321716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2021
-
T[n_, k_]:= (n*k)!/Product[Product[i+j-1, {j,1,k}], {i,1,n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 17 2018 *)
T[n_, k_]:= (n*k)!*BarnesG[n+1]*BarnesG[k+1]/BarnesG[n+k+1];
Table[T[n, k], {n, 0, 5}, {k, 0, n}] //Flatten (* G. C. Greubel, May 04 2021 *)
-
def A321716(n,k): return factorial(n*k)/product( gamma(j+k)/gamma(j) for j in (1..n) )
flatten([[A321716(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 04 2021
A321978
9-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 4862, 414315330, 177295473274920, 219738059326729823880, 583692803893929928888544400, 2760171874087743799855959353857200, 20535535214275361308250745082811167425600, 220381378415074546123953914908618547085974856000
Offset: 0
-
List([0..10],n->5056584744960000*Factorial(9*n)/Product([0..8],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[5056584744960000*Factorial(9*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)*Factorial(n + 8)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
Table[5056584744960000 (9 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)! (n + 6)! (n + 7)! (n + 8)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)
A062528
Number of ways to fill an n X n matrix with numbers 1, 2, ..., n*n such that each row and each column is decreasing or increasing.
Original entry on oeis.org
1, 24, 736, 486200, 15717093608, 41301356272912040, 12775545227876350768099688, 645382645785863222088428068265093848, 6899505383250315051751361998008633233501722290328
Offset: 1
a(2) = 4! = 24 because every arrangement of the four elements of a 2 X 2 matrix satisfies the conditions.
A177847
Array T(n,m)= (n*m)!*Beta(n, m) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 60, 60, 6, 24, 2016, 12096, 2016, 24, 120, 120960, 7983360, 7983360, 120960, 120, 720, 11404800, 12454041600, 149448499200, 12454041600, 11404800, 720, 5040, 1556755200, 38109367296000, 8688935743488000, 8688935743488000
Offset: 1
The array starts in row n=1 as:
1, 1, 2, 6, 24, ...
1, 4, 60, 2016, 120960, ...
2, 60, 12096, 7983360, 12454041600, ...
6, 2016, 7983360, 149448499200, 8688935743488000, ...
24, 120960, 12454041600, 8688935743488000, 24620968322747596800000, ...
-
A177847 := proc(n,m) (n*m)!*Beta(n,m) ; end proc:
seq (seq (A177847(n, 1+d-n), n=1..d), d=1..10);
-
t[n_, m_] = (n*m)!*Beta[n, m];
a = Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
Comments