cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A162510 Dirichlet inverse of A076479.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 32, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 16, 1, 2, 2, 4, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Comments

Apart from signs, this sequence is identical to A162512.

Crossrefs

Programs

  • Maple
    A162510 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*2^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := 2^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after R. J. Mathar *)
  • PARI
    a(n)=my(f=factor(n)[,2]); 2^(vecsum(f)-#f) \\ Charles R Greathouse IV, Nov 02 2016
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [2**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017

Formula

Multiplicative with a(p^e) = 2^(e-1) for any prime p and any positive exponent e.
a(n) = n/2 when n is a power of 2 (A000079).
a(n) = 1 when n is a squarefree number (A005117).
a(n) = 2^A046660(n) = A061142(n)/A034444(n). - R. J. Mathar, Nov 02 2016
a(n) = Sum_{d|n} mu(d) * 2^A001222(n/d). - Daniel Suteu, May 21 2020
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^omega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021
Dirichlet g.f.: (1/zeta(s)) * Product_{p prime} (1/(1 - 2/p^s)). - Amiram Eldar, Sep 16 2023
Sum_{k=1..n} 1/a(k) = c * n + o(n), where c = Product_{p prime} (1 - 1/(p*(2*p-1))) = 0.74030830284678515949... (Jakimczuk, 2024, Theorem 2.4, p. 16). - Amiram Eldar, Mar 08 2024
From Vaclav Kotesovec, Mar 08 2024: (Start)
Dirichlet g.f.: zeta(s) * (1 + 1/(2^s*(2^s - 2))) * f(s), where f(s) = Product_{p prime, p>2} (1 + 1/(p^s*(p^s - 2))).
Sum_{k=1..n} a(k) ~ (f(1)*n / (4*log(2))) * (log(n) - 1 + gamma + 5*log(2)/2 + f'(1)/f(1)), where
f(1) = Product_{p prime, p>2} (1 + 1/(p*(p-2))) = A167864 = 1.51478012813749125771853381230067247330485921179389884042843306025133959...,
f'(1) = f(1) * Sum_{p prime, p>2} (-2*log(p)/((p-1)*(p-2))) = -2*f(1)*A347195 = -2.6035805486753944250682818932032862770113061830543948257159113584026980...
and gamma is the Euler-Mascheroni constant A001620. (End)

A165826 Totally multiplicative sequence with a(p) = 5.

Original entry on oeis.org

1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 3125, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    5^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-5*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

Formula

a(n) = A000351(A001222(n)) = 5^bigomega(n) = 5^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 5 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

A167864 Decimal expansion of Selberg-Delange constant Product_{prime p > 2} (1 + 1/(p(p-2))).

Original entry on oeis.org

1, 5, 1, 4, 7, 8, 0, 1, 2, 8, 1, 3, 7, 4, 9, 1, 2, 5, 7, 7, 9, 0, 9, 1, 9, 2, 5, 5, 6, 4, 9, 4, 7, 4, 8, 9, 2, 4, 1, 5, 2, 7, 0, 1, 5, 8, 2, 8, 6, 2, 1, 4, 3, 9, 5, 3, 5, 7, 4, 8, 4, 2, 7, 1, 4, 8, 4, 9, 3, 2, 2, 0, 9, 8, 1, 5, 6, 1, 1, 5, 8, 1, 0, 8, 7, 7, 5, 8, 5, 3, 8, 2, 7, 6, 9, 8, 0, 7, 6, 7, 7, 6, 5, 6, 2
Offset: 1

Views

Author

Jonathan Sondow, Nov 13 2009, Nov 17 2009

Keywords

Comments

Coefficient in formulas for the distribution of integers with a fixed number of prime factors.
Reciprocal of the twin prime constant A005597. See A005597 for links and additional references and comments.
Numerators of partial products are A062271. Denominators are A062270.
An analog for primes of Wallis' product pi/2 = Product_{n >=1} (2n)^2/(2n-1)(2n+1), because A167864 = Product_{prime p>2} (p-1)^2/(p-2)p.
Grosswald (see links) proves that Sum_{k<=x} 2^Omega(k) ~ (1/(8*log(2))) * c * x * (log(x))^2 + O(x * log(x)) where c is this constant. - Amiram Eldar, Jun 06 2020
The asymptotic density of numbers m with A046660(m) = Omega(m) - omega(m) = k is asymptotically ~ c/2^(k+2) as k -> oo, where c is this constant (Rényi, 1955). - Amiram Eldar, Aug 08 2020
Named after the Norwegian mathematician Atle Selberg (1917-2007) and the French mathematician Hubert Delange (1914-2003). - Amiram Eldar, Jun 20 2021

Examples

			Product_{prime p > 2} (1 + 1/(p(p-2))) = 1.5147801281374912577909192556...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 84-93.
  • Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc., Vol. 18, No. 1 (1954), pp. 83-87.
  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 206.

Crossrefs

Cf. A005597.
Cf. A001222 (Omega), A046660, A061142 (2^Omega), A069205 (partial sums of 2^Omega).

Programs

  • Mathematica
    s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, 160}]; RealDigits[1/C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 30 2012, after Pari program in A005597 *)
    $MaxExtraPrecision = 300; digits = 105; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n; LR = Join[{0, 0}, LinearRecurrence[{3, -2}, {2, 6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 19 2016 *)
  • PARI
    prodeulerrat((1 + 1/(p*(p-2))),,3) \\ Hugo Pfoertner, Aug 08 2020

Formula

Equals 1/A005597.
Equals Product_{prime p>2} (p-1)^2/(p-2)p = (2^2/1*3)(4^2/3*5)(6^2/5*7)(10^2/9*11) ....

A124508 a(n) = 2^BigO(n) * 3^omega(n), where BigO = A001222 and omega = A001221, the numbers of prime factors of n with and without repetitions.

Original entry on oeis.org

1, 6, 6, 12, 6, 36, 6, 24, 12, 36, 6, 72, 6, 36, 36, 48, 6, 72, 6, 72, 36, 36, 6, 144, 12, 36, 24, 72, 6, 216, 6, 96, 36, 36, 36, 144, 6, 36, 36, 144, 6, 216, 6, 72, 72, 36, 6, 288, 12, 72, 36, 72, 6, 144, 36, 144, 36, 36, 6, 432, 6, 36, 72, 192, 36, 216, 6, 72, 36, 216, 6, 288, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^PrimeOmega[n] 3^PrimeNu[n],{n,80}] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n) = my(f = factor(n)); 2^bigomega(f) * 3^omega(f); \\ Amiram Eldar, Jul 11 2023

Formula

Multiplicative with p^e -> 3*2^e, p prime and e>0.
a(n) = A061142(n)*A074816(n) = A000079(A001222(n))*A000244(A001221(n)).
A124509 gives the range: A124509(n) = a(A124510(n)) and a(m) <> a(A124510(n)) for m < A124510(n).
For primes p, q with p <> q: a(p) = 6; a(p*q) = 36; a(p^k) = 3*2^k, k>0.
For squarefree numbers m: a(m) = 6^omega(m).
A001222(a(n)) = A001222(n)+1; A001221(a(n)) = 2 for n > 1.
A124511(n) = a(a(n)); A124512(n) = a(a(a(n))).

A226177 a(n) = mu(n)*d(n), where mu(n) = A008683 and d(n) = A000005.

Original entry on oeis.org

1, -2, -2, 0, -2, 4, -2, 0, 0, 4, -2, 0, -2, 4, 4, 0, -2, 0, -2, 0, 4, 4, -2, 0, 0, 4, 0, 0, -2, -8, -2, 0, 4, 4, 4, 0, -2, 4, 4, 0, -2, -8, -2, 0, 0, 4, -2, 0, 0, 0, 4, 0, -2, 0, 4, 0, 4, 4, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 4, -8, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 0, 4, -2, 0, 4, 4, 4, 0, -2, 0, 4, 0, 4, 4, 4, 0, -2, 0, 0, 0, -2, -8, -2, 0, -8
Offset: 1

Views

Author

Wesley Ivan Hurt, May 29 2013

Keywords

Comments

The prime numbers are the only solutions to mu(n)*d(n) = -2.
Multiplicative with a(p) = -2, a(p^e) = 0, e > 1.
The Moebius inverse is A076479, and the Dirichlet inverse A061142. - R. J. Mathar, Jun 03 2013
Möbius transform of (-1)^omega(n). - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(5) = mu(5)*d(5) = (-1)(2) = -2.
		

Crossrefs

Cf. A000005, A000040, A001358, A008683, A074823 (absolute values), A001221.

Programs

Formula

a(n) = mu(n)*d(n) = A008683(n)*A000005(n).
Sum_{n>0} a(n)/n^s = Product_{p prime} (1 - 2p^(-s)). - Ralf Stephan, Jul 07 2013
a(n) = mu(n) * 2^omega(n) = |mu(n)| * (-2)^omega(n), where omega = A001221. - Álvar Ibeas, Dec 30 2018
a(n) = Sum_{d|n} (-1)^omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024

Extensions

More terms from Antti Karttunen, Jul 23 2017
Name changed by David A. Corneth, Jul 23 2017

A318307 Multiplicative with a(p^e) = 2^A002487(e).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 8, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 16, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2018

Keywords

Crossrefs

Differs from A037445 for the first time at n=32, where a(32) = 8, while A037445(32) = 4.

Programs

  • Mathematica
    f[m_] := Module[{a = 1, b = 0, n = m}, While[n > 0, If[OddQ[n], b += a, a += b]; n = Floor[n/2]]; b]; Array[Times @@ Map[2^f@ # &, FactorInteger[#][[All, -1]] ] - Boole[# == 1] &, 105] (* after Jean-François Alcover at A002487 *)
  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A318307(n) = factorback(apply(e -> 2^A002487(e),factor(n)[,2]));
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A318307(n): return 1<Chai Wah Wu, May 18 2023

Formula

a(n) = 2^A318306(n).
a(n) = A061142(A318470(n)).
a(n^2) = a(n).
a(A003557(n^2)) = A318316(n).
Dirichlet convolution square of A318667(n)/A317934(n).

A322838 Number of positive integers less than n with more prime factors than n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 5, 0, 6, 2, 2, 0, 9, 1, 10, 1, 5, 5, 13, 0, 6, 6, 2, 2, 18, 2, 19, 0, 10, 10, 10, 1, 24, 11, 11, 1, 27, 5, 28, 5, 5, 15, 31, 0, 16, 6, 17, 6, 36, 2, 19, 2, 20, 20, 41, 2, 42, 21, 9, 0, 23, 10, 47, 10, 25, 10, 50, 1, 51, 27, 11, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2018

Keywords

Examples

			Column n lists the a(n) positive integers less than n with more prime factors than n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
              4     6     8  8   10      12  12  12      16  16  18  16
                    4            9       10  8   8       15      16
                                 8       9               14      15
                                 6       8               12      14
                                 4       6               10      12
                                         4               9       10
                                                         8       9
                                                         6       8
                                                         4       6
                                                                 4
		

Crossrefs

Positions of zeros appear to be A029744.

Programs

  • Mathematica
    Table[Length[Select[Range[n],PrimeOmega[#]>PrimeOmega[n]&]],{n,100}]

A351347 Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(-s) - 2*p^(-2*s)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 21, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 11, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 43, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 11, 11, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 21, 1, 3, 3, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (2^(e + 1) + (-1)^e)/3; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X - 2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2022

Formula

Multiplicative with a(p^e) = Jacobsthal(e+1).
From Vaclav Kotesovec, Feb 11 2022: (Start)
Let f(s) = Product_{prime p>2} (1 - 3/p^(2*s) + 2/p^(3*s))/(1 - 4/p^(2*s)), then
Sum_{k=1..n} a(k) ~ n*((2 * Pi^2 * log(n) + Pi^2 * (5*log(2) + 2*gamma - 2) + 24*zeta'(2))*f(1) + 2*Pi^2 * f'(1)) / (48*log(2)), where
f(1) = Product_{prime p > 2} (1 + 1/(p*(p-2))) = A167864 = 1.5147801281374912577909192556494748924152701582862143953574842714849322098...,
f'(1) = -f(1) * Sum_{primes p > 2} 2*log(p) / (2 - 3*p + p^2) = -2*f(1)*A347195 = -2.603580548675394425068281893203286277011306183054394825715911358402698051... and gamma is the Euler-Mascheroni constant A001620. (End)

A123667 a(n) = n * 2^bigomega(n).

Original entry on oeis.org

1, 4, 6, 16, 10, 24, 14, 64, 36, 40, 22, 96, 26, 56, 60, 256, 34, 144, 38, 160, 84, 88, 46, 384, 100, 104, 216, 224, 58, 240, 62, 1024, 132, 136, 140, 576, 74, 152, 156, 640, 82, 336, 86, 352, 360, 184, 94, 1536, 196, 400, 204, 416, 106, 864, 220, 896, 228, 232, 118
Offset: 1

Views

Author

Keywords

Comments

Rearrangement of A123666.

Crossrefs

Cf. A061142, A001222 (bigomega), A123666.

Programs

Formula

Totally multiplicative with a(p) = 2p, p prime.
a(n) = n * A061142(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 2 * p^(1 - s)). - Ilya Gutkovskiy, Oct 29 2019

A342767 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime factorizations of numbers (see Comments section for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 3, 4, 1, 1, 2, 4, 4, 2, 1, 1, 4, 3, 8, 3, 4, 1, 1, 2, 6, 4, 4, 6, 2, 1, 1, 8, 3, 8, 5, 8, 3, 8, 1, 1, 4, 8, 4, 6, 6, 4, 8, 4, 1, 1, 4, 9, 16, 5, 12, 5, 16, 9, 4, 1, 1, 2, 6, 8, 8, 6, 6, 8, 8, 6, 2, 1, 1, 8, 3, 8, 9, 16, 7, 16, 9, 8, 3, 8, 1
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

To compute T(n, k):
- write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
- to "multiply" two prime numbers: take the smallest,
- to "add" two prime numbers: take the largest,
- for example, for T(12, 14):
12 -> 2 2 3
14 -> x 2 7
-------
2 2 3
+ 2 2 2
---------
2 2 2 3 -> 24 = T(12, 14)
This sequence is closely related to lunar multiplication (A087062):
- let n and k be two p-smooth numbers,
- let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
- let g be the inverse of f,
- then for any p-smooth numbers n and k, T(n, k) = g(f(n) "*" f(k)) where "*" denotes lunar product in base p+1,
- as T(n, p) = n for any prime number >= A006530(n), we don't have prime numbers here,
- however, if we consider only p-smooth numbers (for some prime number p), then p is the "unit" and the semiprimes p*q (with q <= p) are "prime".

Examples

			Array T(n, k) begins:
  n\k|  1  2   3   4   5   6   7   8   9  10  11  12  13  14
  ---+------------------------------------------------------
    1|  1  1   1   1   1   1   1   1   1   1   1   1   1   1
    2|  1  2   2   4   2   4   2   8   4   4   2   8   2   4  ->  A061142
    3|  1  2   3   4   3   6   3   8   9   6   3  12   3   6  ->  A079065
    4|  1  4   4   8   4   8   4  16   8   8   4  16   4   8
    5|  1  2   3   4   5   6   5   8   9  10   5  12   5  10
    6|  1  4   6   8   6  12   6  16  18  12   6  24   6  12
    7|  1  2   3   4   5   6   7   8   9  10   7  12   7  14
    8|  1  8   8  16   8  16   8  32  16  16   8  32   8  16
    9|  1  4   9   8   9  18   9  16  27  18   9  36   9  18
   10|  1  4   6   8  10  12  10  16  18  20  10  24  10  20
   11|  1  2   3   4   5   6   7   8   9  10  11  12  11  14
   12|  1  8  12  16  12  24  12  32  36  24  12  48  12  24
   13|  1  2   3   4   5   6   7   8   9  10  11  12  13  14
   14|  1  4   6   8  10  12  14  16  18  20  14  24  14  28
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(n, k) = T(k, n).
T(n, n) = A342768(n).
T(n, 1) = 1.
T(n, 2) = A061142(n).
T(n, 3) = A079065(n).
T(n, p) = n for any prime number p >= A006530(n).
Previous Showing 11-20 of 49 results. Next