A167332 Totally multiplicative sequence with a(p) = 2*(4*p-1) = 8*p-2 for prime p.
1, 14, 22, 196, 38, 308, 54, 2744, 484, 532, 86, 4312, 102, 756, 836, 38416, 134, 6776, 150, 7448, 1188, 1204, 182, 60368, 1444, 1428, 10648, 10584, 230, 11704, 246, 537824, 1892, 1876, 2052, 94864, 294, 2100, 2244, 104272, 326, 16632, 342, 16856
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:=n -> mul((8*t[1]-2)^t[2],t=ifactors(n)[2]): map(f, [$1..100]); # Robert Israel, Jun 06 2016
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((4*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *) f[p_, e_] := (8*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)
-
PARI
a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = 8*f[k,1]-2;); factorback(f);} \\ Michel Marcus, Jun 06 2016
Comments