cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A291954 Triangle read by rows: T(n,k) = T(n-k,k-1) - T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, -1, 0, 1, 1, 0, -1, -1, 0, 1, 0, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, -1, 0, 0, 1, 0, -1, 0, -1, 0, 2, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 0, 0, 1, 0, -2, -1, 0, -1, 0, 2, 1, 0, 1, 1, -2, 0, 1, 0, -1, -1, 2, 1, -1, 0, 1, 0, -2, -1, 0, 0, -1, 0, 3, 1, -1, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 06 2017

Keywords

Examples

			First few rows are:
  1;
  0,  1;
  0, -1;
  0,  1,  1;
  0, -1, -1;
  0,  1,  0;
  0, -1,  0,  1;
  0,  1,  1, -1;
  0, -1, -1,  0;
  0,  1,  0, -1;
  0, -1,  0,  2, 1.
		

Crossrefs

Row sums give A003406.
Columns 0-1 give A000007, A062157.

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1+x^j).

A063221 Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 57 ).

Original entry on oeis.org

3, 10, 14, 22, 26, 34, 38, 46, 50, 58, 62, 70, 74, 82, 86, 94, 98, 106, 110, 118, 122, 130, 134, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 202, 206, 214, 218, 226, 230, 238, 242, 250, 254, 262, 266, 274, 278, 286, 290, 298
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2001

Keywords

Crossrefs

Cf. A007310.
Essentially the same as A091999.

Formula

Seems to be 6n - 3 + A062157(n-1). - Ralf Stephan, Feb 16 2004
G.f.: 3x-2*x^2*(-5-2*x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 15 2015
a(n) = 2*A007310(n) for n>1. - Philippe Deléham, Nov 23 2016

A117997 Sum_{d|n} a(d) = n for n = 3^m (m >= 0) and for other n the sum is zero; i.e., the Möbius transform of [1, 0, 3, 0, 0, 0, 0, 0, 9, 0,...].

Original entry on oeis.org

1, -1, 2, 0, -1, -2, -1, 0, 6, 1, -1, 0, -1, 1, -2, 0, -1, -6, -1, 0, -2, 1, -1, 0, 0, 1, 18, 0, -1, 2, -1, 0, -2, 1, 1, 0, -1, 1, -2, 0, -1, 2, -1, 0, -6, 1, -1, 0, 0, 0, -2, 0, -1, -18, 1, 0, -2, 1, -1, 0, -1, 1, -6, 0, 1, 2, -1, 0, -2, -1, -1, 0, -1, 1, 0, 0, 1, 2, -1, 0, 54, 1, -1, 0, 1, 1, -2, 0, -1, 6, 1, 0, -2, 1, 1, 0, -1, 0, -6, 0, -1, 2, -1, 0, 2
Offset: 1

Views

Author

Paul D. Hanna, Apr 08 2006

Keywords

Comments

From Petros Hadjicostas, Jul 26 2020: (Start)
For p prime >= 2, Petrogradsky (2003) defined the multiplicative functions 1_p and mu_p in the following way:
1_p(n) = 1 when gcd(n,p) = 1 and 1_p(n) = 1 - p when gcd(n,p) = p;
mu_p(n) = mu(n) when gcd(n,p) = 1 and mu_p(n) = mu(m)*(p^s - p^(s-1)) when n = m*p^s with gcd(m,p) = 1 and s >= 1.
We have 1_2(n) = A062157(n), 1_3(n) = A061347(n), A067856(n) = mu_2(n), and a(n) = mu_3(n) for n >= 1.
Some of the results by other contributors here and in A067856 can be generalized:
(i) Rogel's (1897) formula for A067856 becomes Sum_{d | n} 1_p(d) * mu_p(n/d) = 0 for n > 1. Thus, 1_p is the Dirichlet inverse of mu_p.
(ii) R. J. Mathar's Dirichlet g.f. for mu_p becomes 1/(zeta(s) * (1 - p^(1-s))). The Dirichlet g.f. for 1_p is zeta(s) * (1 - p^(1-s)).
(iii) Benoit Cloitre's formula becomes 1 = Sum_{k=1..n} mu_p(k)*g_p(n/k), where g_p(x) = floor(x) - p*floor(x/p) = floor(x) mod p.
(iv) Paul D. Hanna's formula becomes Sum_{n >= 1} (mu_p(n)/n)*log((1 - x^(n*p))/(1 - x^n)) = x.
(v) The definition in the name of the sequence a(n) generalizes to Sum_{d | n} mu_p(d) = n, if n = p^s for s >= 0, and = 0, otherwise. Thus, mu_p(n) = Sum_{p^k | n, k >= 0} mu(n/p^k)*p^k. That is, (mu_p(n): n >= 1) is the Möbius transform of the sequence (b_p(n): n >= 1), where b_p(n) = p^k, if n = p^k for k >= 0, and b_p(n) = 0, otherwise.
(vi) We have the Lambert series Sum_{n >= 1} mu_p(n)*x^n/(1 - x^n) = Sum_{k >= 0} p^k*x^(p^k) = x + p*x^p + p^2*x^(p^2) + ..., which generalizes one of the formulas by Peter Bala in A067856.
(vii) By differentiating both sides of (iv) w.r.t. x and multiplying both sides by x, we get Sum_{n >= 1} mu_p(n)*(x^n + 2*x^(2*n) + ... + (p-1)*x^(n*(p-1)))/(1 + x^n + x^(2*n) + ... + x^(n*(p-1))) = x, which generalizes another one of Peter Bala's formulas in A067856. It can be thought as a "generalized Lambert series".
(viii) Dividing both sides of (vi) by x and integrating w.r.t. x from 0 to y, we get -Sum_{n >= 1} (mu_p(n)/n)*log(1 - y^n) = Sum_{k >= 0} y^(p^k) = y + y^p + y^(p^2) + y^(p^3) + ...
(ix) Obviously, f(n) = Sum_{d | n} 1_p(n/d)*g(d) if and only if g(n) = Sum_{d | n} mu_p(n/d)*f(d). (End)

Crossrefs

Programs

  • PARI
    {a(n)=if(n==1,1,-n*polcoeff(x+sum(k=1,n-1,a(k)/k*subst(log(1+x+x^2+x*O(x^n)),x,x^k+x*O(x^n))),n))}
    
  • PARI
    A117997(n) = sumdiv(n,d,moebius(n/d)*if((3^valuation(d,3))==d,d,0)); \\ Antti Karttunen, Jan 15 2025

Formula

G.f.: x = Sum_{n >= 1} (a(n)/n)*log(1 + x^n + x^(2*n)).
1 = Sum_{k=1..n} a(k)*g(n/k), where g(x) = floor(x) - 3*floor(x/3). [Benoit Cloitre, Nov 11 2010]
From Petros Hadjicostas, Jul 26 2020: (Start)
a(n) = Sum_{3^k | n, k >= 0} mu(n/3^k)*3^k.
Dirichlet g.f.: 1/(zeta(s)*(1 - 3^(1-s))).
The sequence is the Dirichlet inverse of A061347.
Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x + 3*x^3 + 9*x^9 + 27*x^27 + 81*x^81 + ...
Sum_{n >= 1} a(n)*(x^n + 2*x^(2*n))/(1 + x^n + x^(2*n)) = x.
-Sum_{n >= 1} (a(n)/n)*log(1 - x^n) = x + x^3 + x^9 + x^27 + x^81 + ... (End)

Extensions

Offset changed to 1 by Petros Hadjicostas, Jul 26 2020

A118209 Expansion of Sum_{k>=1} lambda(k) * k * x^k/(1 + x^k) where lambda(k) is the Liouville function, A008836.

Original entry on oeis.org

1, -3, -2, 5, -4, 6, -6, -11, 7, 12, -10, -10, -12, 18, 8, 21, -16, -21, -18, -20, 12, 30, -22, 22, 21, 36, -20, -30, -28, -24, -30, -43, 20, 48, 24, 35, -36, 54, 24, 44, -40, -36, -42, -50, -28, 66, -46, -42, 43, -63, 32, -60, -52, 60, 40, 66, 36, 84, -58, 40, -60, 90, -42, 85, 48, -60, -66, -80, 44, -72, -70, -77, -72, 108, -42
Offset: 1

Views

Author

Stuart Clary, Apr 15 2006

Keywords

Comments

Related to the logarithmic derivative of A118207(x) and A118208(x).
Related to a signed variant of A022998 via Mobius inversion. - R. J. Mathar, Jul 03 2011

Crossrefs

Programs

  • Mathematica
    nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; Drop[ CoefficientList[ Series[ Sum[ lambda[k] k x^k/(1 + x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ]
    f[p_, e_] := (p*(-p)^e+1)/(p+1); f[2, e_] := ((-1)^e*2^(e+2) - 1)/3; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d - 1)*(-1)^vecsum(factor(d)[,2])*d) \\ Michel Marcus, Dec 10 2016

Formula

a(n) = Sum_{d|n} (-1)^(n/d - 1)*lambda(d)*d, Dirichlet convolution of A061019 and A062157.
G.f.: A(x) is x times the logarithmic derivative of A118207(x).
G.f.: A(x) = A061020(x) - 2 A061020(x^2).
Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-2^(1-s))/zeta(s-1). - R. J. Mathar, Jul 03 2011
a(n) > 0 for n in A028260. - Michel Marcus, Dec 10 2016
Multiplicative with a(2^e) = ((-1)^e*2^(e+2) - 1)/3, and a(p^e) = (p*(-p)^e+1)/(p+1) for an odd prime p. - Amiram Eldar, Aug 12 2023

A274073 a(n) = 6^n-(-1)^n.

Original entry on oeis.org

0, 7, 35, 217, 1295, 7777, 46655, 279937, 1679615, 10077697, 60466175, 362797057, 2176782335, 13060694017, 78364164095, 470184984577, 2821109907455, 16926659444737, 101559956668415, 609359740010497, 3656158440062975, 21936950640377857, 131621703842267135
Offset: 0

Views

Author

Colin Barker, Jun 09 2016

Keywords

Crossrefs

Cf. A015540.
Sequences of the type k^n-(-1)^n: A062157 (k=0), A010673 (k=1), A062510 (k=2), A105723 (k=3), A247281 (k=4), A274072 (k=5), this sequence (k=6).

Programs

  • PARI
    concat(0, Vec(7*x/((1+x)*(1-6*x)) + O(x^30)))

Formula

O.g.f.: 7*x/((1+x)*(1-6*x)).
E.g.f.: exp(6*x) - exp(-x).
a(n) = 5*a(n-1) + 6*a(n-2) for n>1.
a(n) = 7*A015540(n).

A021499 Decimal expansion of 1/495.

Original entry on oeis.org

0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0
Offset: 0

Views

Author

Keywords

Comments

0, then repeat 0, 2. [Arkadiusz Wesolowski, Jul 22 2011]

Crossrefs

A010673 shifted right.

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/495,10,120][[1]]] (* or *) PadRight[{0},120,{2,0}] (* Harvey P. Dale, Dec 13 2020 *)

Formula

a(n) = 1 + (-1)^n - 2*0^n = (-1 - A033999(n))*A062157(n). [Arkadiusz Wesolowski, Jul 22 2011]
G.f.: 2*x^2/(1-x^2). - Bruno Berselli, Jul 22 2011

A274072 a(n) = 5^n-(-1)^n.

Original entry on oeis.org

0, 6, 24, 126, 624, 3126, 15624, 78126, 390624, 1953126, 9765624, 48828126, 244140624, 1220703126, 6103515624, 30517578126, 152587890624, 762939453126, 3814697265624, 19073486328126, 95367431640624, 476837158203126, 2384185791015624, 11920928955078126
Offset: 0

Views

Author

Colin Barker, Jun 09 2016

Keywords

Crossrefs

Cf. A015531.
Sequences of the type k^n-(-1)^n: A062157 (k=0), A010673 (k=1), A062510 (k=2), A105723 (k=3), A247281 (k=4), this sequence (k=5), A274073 (k=6).

Programs

  • Mathematica
    LinearRecurrence[{4, 5}, {0, 6}, 30] (* Paolo Xausa, Oct 21 2024 *)
  • PARI
    concat(0, Vec(6*x/((1+x)*(1-5*x)) + O(x^30)))

Formula

O.g.f.: 6*x/((1+x)*(1-5*x)).
E.g.f.: exp(5*x) - exp(-x).
a(n) = 4*a(n-1) + 5*a(n-2) for n>1.
a(n) = 6*A015531(n).
Previous Showing 11-17 of 17 results.