cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A181287 Numbers of the form i*5^j-1 (i=1..4, j >= 0).

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 14, 19, 24, 49, 74, 99, 124, 249, 374, 499, 624, 1249, 1874, 2499, 3124, 6249, 9374, 12499, 15624, 31249, 46874, 62499, 78124, 156249, 234374, 312499, 390624, 781249, 1171874, 1562499, 1953124, 3906249, 5859374, 7812499, 9765624, 19531249, 29296874, 39062499, 48828124, 97656249, 146484374, 195312499
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2011

Keywords

Comments

Row numbers of Pascal's Triangle where none of the binomial coefficients in that row is divisible by 5. - Thomas M. Green, Apr 02 2013

Examples

			For n = 7, a(7) = 14 and the binomial coefficients in the 14th row of Pascal's Triangle are 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1 and none of the elements in that row is divisible by 5. - _Thomas M. Green_, Apr 05 2013
		

Crossrefs

Smallest number whose base b sum of digits is n: A000225 (b=2), A062318 (b=3), A180516 (b=4), this sequence (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10). - Jason Kimberley, Nov 02 2011

Formula

a(n) = a(n-1)+5*a(n-4)-5*a(n-5). G.f.: x^2*(x+1)*(x^2+1) / ((x-1)*(5*x^4-1)). [Colin Barker, Feb 01 2013]

A140576 Numbers of the form i*9^j-1 (i=1..8, j >= 0).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 26, 35, 44, 53, 62, 71, 80, 161, 242, 323, 404, 485, 566, 647, 728, 1457, 2186, 2915, 3644, 4373, 5102, 5831, 6560, 13121, 19682, 26243, 32804, 39365, 45926, 52487, 59048, 118097, 177146, 236195, 295244, 354293, 413342, 472391, 531440, 1062881
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2011

Keywords

Comments

A base-9 analog of A051885.

Crossrefs

Smallest number whose base b sum of digits is n: A000225 (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), this sequence (b=9), A051885 (b=10). - Jason Kimberley, Nov 02 2011

Formula

G.f.: x^2*(x+1)*(x^2+1)*(x^4+1) / ((x-1)*(3*x^4-1)*(3*x^4+1)). [Colin Barker, Feb 01 2013]

A165804 Numbers of the form i*8^j-1 (i=1..7, j >= 0).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 15, 23, 31, 39, 47, 55, 63, 127, 191, 255, 319, 383, 447, 511, 1023, 1535, 2047, 2559, 3071, 3583, 4095, 8191, 12287, 16383, 20479, 24575, 28671, 32767, 65535, 98303, 131071, 163839, 196607, 229375, 262143, 524287, 786431, 1048575, 1310719, 1572863, 1835007, 2097151
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2011

Keywords

Comments

Numbers whose sum of digits in base 8 sets a new record. - Harvey P. Dale, Jan 10 2024

Crossrefs

Smallest number whose base b sum of digits is n: A000225 (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), this sequence (b=8), A140576 (b=9), A051885 (b=10). - Jason Kimberley, Nov 02 2011

Programs

  • Mathematica
    Sort[Flatten[Table[i 8^j-1,{i,1,7},{j,0,7}]]]  (* Harvey P. Dale, Feb 03 2011 *)

Formula

G.f.: x^2*(x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)*(8*x^7-1)). [Colin Barker, Feb 01 2013]

A181288 Numbers of the form i*6^j-1 (i=1..5, j >= 0).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 11, 17, 23, 29, 35, 71, 107, 143, 179, 215, 431, 647, 863, 1079, 1295, 2591, 3887, 5183, 6479, 7775, 15551, 23327, 31103, 38879, 46655, 93311, 139967, 186623, 233279, 279935, 559871, 839807, 1119743, 1399679, 1679615, 3359231, 5038847, 6718463, 8398079, 10077695, 20155391, 30233087
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2011

Keywords

Crossrefs

Smallest number whose base b sum of digits is n: A000225 (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), this sequence (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10). - Jason Kimberley, Nov 02 2011

Programs

  • Mathematica
    Union[Flatten[Table[i*6^j-1,{j,0,20},{i,5}]]] (* Harvey P. Dale, Nov 12 2012 *)

Formula

G.f.: x^2*(x^4+x^3+x^2+x+1) / ((x-1)*(6*x^5-1)). [Colin Barker, Feb 01 2013]

A181303 Numbers of the form i*7^j-1 (i=1..6, j >= 0).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 48, 97, 146, 195, 244, 293, 342, 685, 1028, 1371, 1714, 2057, 2400, 4801, 7202, 9603, 12004, 14405, 16806, 33613, 50420, 67227, 84034, 100841, 117648, 235297, 352946, 470595, 588244, 705893, 823542, 1647085, 2470628, 3294171, 4117714, 4941257
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2011

Keywords

Crossrefs

Smallest number whose base b sum of digits is n: A000225 (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), this sequence (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10). - Jason Kimberley, Nov 02 2011

Programs

  • Mathematica
    Sort[Flatten[Table[i 7^j-1,{i,1,6},{j,0,7}]]]  (* Harvey P. Dale, Feb 03 2011 *)

Formula

G.f.: x^2*(x+1)*(x^2-x+1)*(x^2+x+1) / ((x-1)*(7*x^6-1)). - Colin Barker, Feb 01 2013

A191595 Order of smallest n-regular graph of girth 5.

Original entry on oeis.org

5, 10, 19, 30, 40, 50
Offset: 2

Views

Author

N. J. A. Sloane, Jun 07 2011

Keywords

Comments

Current upper bounds for a(8)..a(20) are 80, 96, 124, 154, 203, 230, 288, 312, 336, 448, 480, 512, 576. - Corrected from "Lower" to "Upper" and updated, from Table 4 of the Dynamic cage survey, by Jason Kimberley, Dec 29 2012
Current lower bounds for a(8)..a(20) are 67, 86, 103, 124, 147, 174, 199, 230, 259, 294, 327, 364, 403. - from Table 4 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306(k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10),A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 02 2011

Formula

a(n) >= A002522(n) with equality if and only if n = 2, 3, 7 or possibly 57. - Jason Kimberley, Nov 02 2011

Extensions

a(2) = 5 prepended by Jason Kimberley, Jan 02 2013

A164123 Partial sums of A162436.

Original entry on oeis.org

1, 4, 7, 16, 25, 52, 79, 160, 241, 484, 727, 1456, 2185, 4372, 6559, 13120, 19681, 39364, 59047, 118096, 177145, 354292, 531439, 1062880, 1594321, 3188644, 4782967, 9565936, 14348905, 28697812, 43046719, 86093440, 129140161, 258280324, 387420487, 774840976, 1162261465
Offset: 1

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Comments

Interleaving of A058481 and A100774 without initial term 0.
Apparently a(n) = A062318(n+2) - 1.
The terms beginning with a(2) are the row numbers in Pascal's Triangle where every 3rd element in those rows is divisible by 3 and none of the other elements in those rows are divisible by 3. - Thomas M. Green, Apr 03 2013

Examples

			For n = 3, a(3) = 7. The binomial coefficients of the 7th row of Pascal's Triangle are 1 7 21 35 35 21 7 1 and every 3rd element is a multiple of 3. - _Thomas M. Green_, Apr 03 2013
		

References

  • Thomas M. Green, Prime Patterns in Pascal's Triangle, paper in review process, 2013.

Crossrefs

Cf. A162436, A058481 (3^n-2), A100774 (2*(3^n - 1)), A062318, A038754, A038754.

Programs

  • Magma
    T:=[ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..33] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
    
  • Mathematica
    Accumulate[Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]]] (* Harvey P. Dale, Feb 17 2012 *)
  • PARI
    a(n) = (2+n%2)*3^(n\2)-2 \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A038754(n+1) - 2.
a(n) = 3*a(n-2) + 4 for n > 2; a(1) = 1, a(2) = 4.
a(n) = (5 - (-1)^n)*3^(1/4*(2*n - 1 + (-1)^n))/2 - 2.
G.f.: x*(1 + 3*x)/((1 - x)*(1 - 3*x^2)).
E.g.f.: 2*(cosh(sqrt(3)*x) - cosh(x)) + sqrt(3)*sinh(sqrt(3)*x) - 2*sinh(x). - Stefano Spezia, Dec 31 2022

Extensions

Incorrect formula removed by Stefano Spezia, Dec 31 2022

A052993 a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3), with a(0)=a(1)=1, a(2)=4.

Original entry on oeis.org

1, 1, 4, 4, 13, 13, 40, 40, 121, 121, 364, 364, 1093, 1093, 3280, 3280, 9841, 9841, 29524, 29524, 88573, 88573, 265720, 265720, 797161, 797161, 2391484, 2391484, 7174453, 7174453, 21523360, 21523360, 64570081, 64570081, 193710244
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A062318.

Programs

  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..30]]; // G. C. Greubel, Nov 21 2018
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Union(Z,Z,Z),Z)),Sequence(Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    (3^(1+Floor[(Range@40-1)/2])-1)/2 (* Federico Provvedi, Nov 22 2018 *)
    LinearRecurrence[{1,3,-3}, {1,1,4}, 30] (* or *) RecurrenceTable[{a[n + 2] == 3*a[n] + 1, a[0] == 1, a[1] == 1}, a, {n,0,30}] (* G. C. Greubel, Nov 21 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/((1-3*x^2)*(1-x))) \\ G. C. Greubel, Nov 21 2018
    
  • Sage
    s=(1/((1-3*x^2)*(1-x))).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 21 2018

Formula

G.f.: 1/((1-3*x^2)*(1-x)).
a(n+2) = 3*a(n) + 1, where a(0) = a(1) = 1.
a(n) = -1/2 + Sum((1/4)*(1+3*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1 + 3*_Z^2)).
a(n) = Sum{k=0..n} 3^(k/2)*(1-(-1)^k)/(2*sqrt(3)). - Paul Barry, Jul 28 2004
a(n) = (3^(1+floor((n-1)/2)) - 1)/2. - Federico Provvedi, Nov 22 2018
a(n)-a(n-1) = A254006(n). - R. J. Mathar, Feb 27 2019

Extensions

More terms from James Sellers, Jun 06 2000

A152714 Triangle read by rows: T(n,k) = 3^min(k, n-k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 9, 3, 1, 1, 3, 9, 9, 3, 1, 1, 3, 9, 27, 9, 3, 1, 1, 3, 9, 27, 27, 9, 3, 1, 1, 3, 9, 27, 81, 27, 9, 3, 1, 1, 3, 9, 27, 81, 81, 27, 9, 3, 1, 1, 3, 9, 27, 81, 243, 81, 27, 9, 3, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 11 2008

Keywords

Examples

			Triangle begins
  {1},
  {1, 1},
  {1, 3, 1},
  {1, 3, 3,  1},
  {1, 3, 9,  3,  1},
  {1, 3, 9,  9,  3,   1},
  {1, 3, 9, 27,  9,   3,  1},
  {1, 3, 9, 27, 27,   9,  3,  1},
  {1, 3, 9, 27, 81,  27,  9,  3, 1},
  {1, 3, 9, 27, 81,  81, 27,  9, 3, 1},
  {1, 3, 9, 27, 81, 243, 81, 27, 9, 3, 1}
		

Crossrefs

Cf. A004197, A144464, A152716, A152717, A062318 (row sums).

Programs

  • Magma
    [[3^(Min(k,n-k)): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Clear[a, k, m]; k = 3; a[0] = {1}; a[1] = {1, 1};
    a[n_] := a[n] = Join[{1}, k*a[n - 2], {1}];
    Table[a[n], {n, 0, 10}];
    Flatten[%]
    Table[3^(Min[k, n - k]), {n, 0, 100}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(3^(min(k,n-k)), ", "))) \\ G. C. Greubel, Sep 01 2018
    

Formula

T(n,k) = 3^min(k, n-k) = 3^A004197(n,k). - Philippe Deléham, Feb 25 2014

Extensions

Better name by Philippe Deléham, Feb 25 2014

A060647 Number of alpha-beta evaluations in a tree of depth n and branching factor b=3.

Original entry on oeis.org

1, 3, 5, 11, 17, 35, 53, 107, 161, 323, 485, 971, 1457, 2915, 4373, 8747, 13121, 26243, 39365, 78731, 118097, 236195, 354293, 708587, 1062881, 2125763, 3188645, 6377291, 9565937, 19131875, 28697813, 57395627, 86093441, 172186883, 258280325, 516560651, 774840977
Offset: 0

Views

Author

Frank Ellermann, Apr 17 2001

Keywords

Examples

			a(2n+1) = 2*a(2n) + 1, a(15) = a(2*7+1) = 2*a(14) + 1 = 2*4373 + 1 = 8747.
		

References

  • P. H. Winston, Artificial Intelligence, Addison-Wesley, 1977, pp. 115-122, (alpha-beta technique).

Crossrefs

For b=2 see A052955.
Cf. A068911.

Programs

  • Maple
    A060647 := proc(n,b) option remember: if n mod 2 = 0 then RETURN(2*b^(n/2)-1) else RETURN(b^((n-1)/2) +b^((n+1)/2)-1) fi: end: for n from 0 to 60 do printf(`%d,`, A060647(n,3)) od:
    a[0]:=1:a[1]:=3:for n from 2 to 100 do a[n]:=3*a[n-2]+2 od: seq(a[n], n=0..33); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    f[n_] := Simplify[Sqrt[3]^n(1 + 2/Sqrt[3]) + (1 - 2/Sqrt[3])(-Sqrt[3])^n - 1]; Table[ f[n], {n, 0, 34}] (* or *)
    f[n_] := If[ EvenQ[n], 2(3^(n/2)) - 1, 3^((n - 1)/2) + 3^((n + 1)/2) - 1]; Table[ f[n], {n, 0, 34}] (* or *)
    CoefficientList[ Series[(1 + 2x - x^2)/((1 - x)(1 - 3x^2)), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 17 2005 *)
  • PARI
    a(n) = { if (n%2==0, 2*(3^(n/2)) - 1, my(m=(n - 1)/2); 3^m + 3^(m + 1) - 1) } \\ Harry J. Smith, Jul 09 2009

Formula

a(2n) = 2*(3^n) - 1, a(2n+1) = 3^n + 3^(n+1) - 1.
Formula for b branches: a(2n) = 2*(b^n)-1, a(2n+1) = b^n+b^(n+1)-1.
a(n) = A068911(n+1) - 1.
G.f.: (1+2*z-z^2)/((1-z)*(1-3*z^2)). - Emeric Deutsch, Nov 18 2002
a(n) = (sqrt(3))^n(1+2/sqrt(3))+(1-2/sqrt(3))(-sqrt(3))^n-1. - Paul Barry, Apr 17 2004
a(2n+1) = 3*a(2n-1) + 2; a(2n) = (a(2n-1) + a(2n+1))/2, with a(1)= 1. See A062318 for case where a(1)= 0.
a(n) = (2^((1+(-1)^n)/2))*(b^((2*n-1+(-1)^n)/4))+((1-(-1)^n)/2)*(b^((2*n+1-(-1)^n)/4))-1, with b=3. - Luce ETIENNE, Aug 30 2014

Extensions

More terms from James Sellers, Apr 19 2001
Previous Showing 21-30 of 42 results. Next