A181287
Numbers of the form i*5^j-1 (i=1..4, j >= 0).
Original entry on oeis.org
0, 1, 2, 3, 4, 9, 14, 19, 24, 49, 74, 99, 124, 249, 374, 499, 624, 1249, 1874, 2499, 3124, 6249, 9374, 12499, 15624, 31249, 46874, 62499, 78124, 156249, 234374, 312499, 390624, 781249, 1171874, 1562499, 1953124, 3906249, 5859374, 7812499, 9765624, 19531249, 29296874, 39062499, 48828124, 97656249, 146484374, 195312499
Offset: 1
For n = 7, a(7) = 14 and the binomial coefficients in the 14th row of Pascal's Triangle are 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1 and none of the elements in that row is divisible by 5. - _Thomas M. Green_, Apr 05 2013
A140576
Numbers of the form i*9^j-1 (i=1..8, j >= 0).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 26, 35, 44, 53, 62, 71, 80, 161, 242, 323, 404, 485, 566, 647, 728, 1457, 2186, 2915, 3644, 4373, 5102, 5831, 6560, 13121, 19682, 26243, 32804, 39365, 45926, 52487, 59048, 118097, 177146, 236195, 295244, 354293, 413342, 472391, 531440, 1062881
Offset: 1
A165804
Numbers of the form i*8^j-1 (i=1..7, j >= 0).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 15, 23, 31, 39, 47, 55, 63, 127, 191, 255, 319, 383, 447, 511, 1023, 1535, 2047, 2559, 3071, 3583, 4095, 8191, 12287, 16383, 20479, 24575, 28671, 32767, 65535, 98303, 131071, 163839, 196607, 229375, 262143, 524287, 786431, 1048575, 1310719, 1572863, 1835007, 2097151
Offset: 1
-
Sort[Flatten[Table[i 8^j-1,{i,1,7},{j,0,7}]]] (* Harvey P. Dale, Feb 03 2011 *)
A181288
Numbers of the form i*6^j-1 (i=1..5, j >= 0).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 11, 17, 23, 29, 35, 71, 107, 143, 179, 215, 431, 647, 863, 1079, 1295, 2591, 3887, 5183, 6479, 7775, 15551, 23327, 31103, 38879, 46655, 93311, 139967, 186623, 233279, 279935, 559871, 839807, 1119743, 1399679, 1679615, 3359231, 5038847, 6718463, 8398079, 10077695, 20155391, 30233087
Offset: 1
-
Union[Flatten[Table[i*6^j-1,{j,0,20},{i,5}]]] (* Harvey P. Dale, Nov 12 2012 *)
A181303
Numbers of the form i*7^j-1 (i=1..6, j >= 0).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 48, 97, 146, 195, 244, 293, 342, 685, 1028, 1371, 1714, 2057, 2400, 4801, 7202, 9603, 12004, 14405, 16806, 33613, 50420, 67227, 84034, 100841, 117648, 235297, 352946, 470595, 588244, 705893, 823542, 1647085, 2470628, 3294171, 4117714, 4941257
Offset: 1
-
Sort[Flatten[Table[i 7^j-1,{i,1,6},{j,0,7}]]] (* Harvey P. Dale, Feb 03 2011 *)
A191595
Order of smallest n-regular graph of girth 5.
Original entry on oeis.org
5, 10, 19, 30, 40, 50
Offset: 2
- M. Abreu et al., A family of regular graphs of girth 5, Discrete Math., 308 (2008), 1810-1815.
- Andries E. Brouwer, Cages
- Geoff Exoo, Regular graphs of given degree and girth
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- G. Royle, Cages of higher valency
Orders of cages:
A054760 (n,k),
A000066 (3,n),
A037233 (4,n),
A218553 (5,n),
A218554 (6,n),
A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306(k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Nov 02 2011
Original entry on oeis.org
1, 4, 7, 16, 25, 52, 79, 160, 241, 484, 727, 1456, 2185, 4372, 6559, 13120, 19681, 39364, 59047, 118096, 177145, 354292, 531439, 1062880, 1594321, 3188644, 4782967, 9565936, 14348905, 28697812, 43046719, 86093440, 129140161, 258280324, 387420487, 774840976, 1162261465
Offset: 1
For n = 3, a(3) = 7. The binomial coefficients of the 7th row of Pascal's Triangle are 1 7 21 35 35 21 7 1 and every 3rd element is a multiple of 3. - _Thomas M. Green_, Apr 03 2013
- Thomas M. Green, Prime Patterns in Pascal's Triangle, paper in review process, 2013.
-
T:=[ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..33] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
-
Accumulate[Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]]] (* Harvey P. Dale, Feb 17 2012 *)
-
a(n) = (2+n%2)*3^(n\2)-2 \\ Charles R Greathouse IV, Jul 15 2011
A052993
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3), with a(0)=a(1)=1, a(2)=4.
Original entry on oeis.org
1, 1, 4, 4, 13, 13, 40, 40, 121, 121, 364, 364, 1093, 1093, 3280, 3280, 9841, 9841, 29524, 29524, 88573, 88573, 265720, 265720, 797161, 797161, 2391484, 2391484, 7174453, 7174453, 21523360, 21523360, 64570081, 64570081, 193710244
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1069
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3).
-
I:=[1,1,4]; [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..30]]; // G. C. Greubel, Nov 21 2018
-
spec := [S,{S=Prod(Sequence(Prod(Union(Z,Z,Z),Z)),Sequence(Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
(3^(1+Floor[(Range@40-1)/2])-1)/2 (* Federico Provvedi, Nov 22 2018 *)
LinearRecurrence[{1,3,-3}, {1,1,4}, 30] (* or *) RecurrenceTable[{a[n + 2] == 3*a[n] + 1, a[0] == 1, a[1] == 1}, a, {n,0,30}] (* G. C. Greubel, Nov 21 2018 *)
-
x='x+O('x^30); Vec(1/((1-3*x^2)*(1-x))) \\ G. C. Greubel, Nov 21 2018
-
s=(1/((1-3*x^2)*(1-x))).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 21 2018
A152714
Triangle read by rows: T(n,k) = 3^min(k, n-k).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 9, 3, 1, 1, 3, 9, 9, 3, 1, 1, 3, 9, 27, 9, 3, 1, 1, 3, 9, 27, 27, 9, 3, 1, 1, 3, 9, 27, 81, 27, 9, 3, 1, 1, 3, 9, 27, 81, 81, 27, 9, 3, 1, 1, 3, 9, 27, 81, 243, 81, 27, 9, 3, 1
Offset: 0
Triangle begins
{1},
{1, 1},
{1, 3, 1},
{1, 3, 3, 1},
{1, 3, 9, 3, 1},
{1, 3, 9, 9, 3, 1},
{1, 3, 9, 27, 9, 3, 1},
{1, 3, 9, 27, 27, 9, 3, 1},
{1, 3, 9, 27, 81, 27, 9, 3, 1},
{1, 3, 9, 27, 81, 81, 27, 9, 3, 1},
{1, 3, 9, 27, 81, 243, 81, 27, 9, 3, 1}
-
[[3^(Min(k,n-k)): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Sep 01 2018
-
Clear[a, k, m]; k = 3; a[0] = {1}; a[1] = {1, 1};
a[n_] := a[n] = Join[{1}, k*a[n - 2], {1}];
Table[a[n], {n, 0, 10}];
Flatten[%]
Table[3^(Min[k, n - k]), {n, 0, 100}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 01 2018 *)
-
for(n=0,15, for(k=0,n, print1(3^(min(k,n-k)), ", "))) \\ G. C. Greubel, Sep 01 2018
A060647
Number of alpha-beta evaluations in a tree of depth n and branching factor b=3.
Original entry on oeis.org
1, 3, 5, 11, 17, 35, 53, 107, 161, 323, 485, 971, 1457, 2915, 4373, 8747, 13121, 26243, 39365, 78731, 118097, 236195, 354293, 708587, 1062881, 2125763, 3188645, 6377291, 9565937, 19131875, 28697813, 57395627, 86093441, 172186883, 258280325, 516560651, 774840977
Offset: 0
a(2n+1) = 2*a(2n) + 1, a(15) = a(2*7+1) = 2*a(14) + 1 = 2*4373 + 1 = 8747.
- P. H. Winston, Artificial Intelligence, Addison-Wesley, 1977, pp. 115-122, (alpha-beta technique).
-
A060647 := proc(n,b) option remember: if n mod 2 = 0 then RETURN(2*b^(n/2)-1) else RETURN(b^((n-1)/2) +b^((n+1)/2)-1) fi: end: for n from 0 to 60 do printf(`%d,`, A060647(n,3)) od:
a[0]:=1:a[1]:=3:for n from 2 to 100 do a[n]:=3*a[n-2]+2 od: seq(a[n], n=0..33); # Zerinvary Lajos, Mar 17 2008
-
f[n_] := Simplify[Sqrt[3]^n(1 + 2/Sqrt[3]) + (1 - 2/Sqrt[3])(-Sqrt[3])^n - 1]; Table[ f[n], {n, 0, 34}] (* or *)
f[n_] := If[ EvenQ[n], 2(3^(n/2)) - 1, 3^((n - 1)/2) + 3^((n + 1)/2) - 1]; Table[ f[n], {n, 0, 34}] (* or *)
CoefficientList[ Series[(1 + 2x - x^2)/((1 - x)(1 - 3x^2)), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 17 2005 *)
-
a(n) = { if (n%2==0, 2*(3^(n/2)) - 1, my(m=(n - 1)/2); 3^m + 3^(m + 1) - 1) } \\ Harry J. Smith, Jul 09 2009
Comments