cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A063490 a(n) = (2*n - 1)*(7*n^2 - 7*n + 6)/6.

Original entry on oeis.org

1, 10, 40, 105, 219, 396, 650, 995, 1445, 2014, 2716, 3565, 4575, 5760, 7134, 8711, 10505, 12530, 14800, 17329, 20131, 23220, 26610, 30315, 34349, 38726, 43460, 48565, 54055, 59944, 66246, 72975, 80145, 87770, 95864, 104441, 113515, 123100, 133210, 143859, 155061
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

From Omar E. Pol, Oct 23 2019: (Start)
a(n) is also the sum of terms that are in the n-th finite row and in the n-th finite column of the square [1,n]x[1,n] of the natural number array A000027; e.g., the [1,3]x[1,3] square is
1..3..6
2..5..9
4..8..13,
so that a(1) = 1, a(2) = 2 + 3 + 5 = 10, a(3) = 4 + 6 + 8 + 9 + 13 = 40.
Hence the partial sums give A185505. (End)

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(7*n^2-7*n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2*n-1)*(7*n^2-7*n+6)/6, {n,1,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,10,40,105}, 50] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(7*n^2 - 7*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-6 + 12*x + 21*x^2 + 14*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: x*(1+x)*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
a(n) = Sum_{k = n^2-2*n+2..n^2} A064788(k). - Lior Manor, Jan 13 2013
From G. C. Greubel, Dec 01 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (-6 + 12*x + 21*x^2 + 14*x^3)*exp(x)/6 + 1. (End)

A063488 a(n) = (2*n-1)*(n^2 -n +2)/2.

Original entry on oeis.org

1, 6, 20, 49, 99, 176, 286, 435, 629, 874, 1176, 1541, 1975, 2484, 3074, 3751, 4521, 5390, 6364, 7449, 8651, 9976, 11430, 13019, 14749, 16626, 18656, 20845, 23199, 25724, 28426, 31311, 34385, 37654, 41124, 44801, 48691, 52800, 57134, 61699, 66501, 71546, 76840
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

Sum of two consecutive terms of A006003(n) = n*(n^2+1)/2. a(n) = A006003(n-1) + A006003(n). - Alexander Adamchuk, Jun 03 2006
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Crossrefs

1/12*t*n*(2*n^2 - 3*n + 1) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005918.

Programs

  • Magma
    [(2*n-1)*(n^2 -n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2 n - 1) (n^2 - n + 2)/2, {n, 1, 40}] (* Bruno Berselli, Oct 14 2016 *)
    LinearRecurrence[{4,-6,4,-1}, {1,6,20,49}, 50] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(n^2 - n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: (1 + x)*(1 + x + x^2)/(1 - x)^4. - Jaume Oliver Lafont, Aug 30 2009
a(n) = A000217(A000217(n)) - A000217(A000217(n-2)). - Bruno Berselli, Oct 14 2016
E.g.f.: (-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017

A068745 Number of potential flows in 4 X 4 array with integer velocities in -n..n, i.e., number of 4 X 4 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 690437, 1133641543, 164185416899, 6913624013061, 138190481342321, 1678843050246451, 14285299502131463, 93044501704039945, 492225938556374973, 2204710243834695807, 8617480381892283531
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

2 X 2 A063496, 3 X 3 A068744, 5 X 5 A068746, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.
Cf. 4 X 4 this sequence (degree 4*4-1) with factor 2n-1 ; 3 X 3 A068744 (degree 3*3-1) with factor (2n-1)^2 ; 2 X 2 A063496 (degree 2*2-1) with factor 2n-1.

Formula

Let y = 2*n - 1; it appears that a(n) = y*(2623243666*y^14 + 9598591135*y^12 + 17180805187*y^10 + 20342655905*y^8 + 17636121503*y^6 + 10907793260*y^4 + 3135618144*y^2 + 304819200)/81729648000. - R. H. Hardin, Jan 01 2007

A068746 Number of potential flows in 5 X 5 array with integer velocities in -n..n, i.e., number of 5 X 5 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 1366395515, 184422574177355, 523957519578572209, 207345516734034667209, 24953087551680958151267, 1354915464537160758459123
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

2 X 2 A063496, 3 X 3 A068744, 4 X 4 A068745, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

A142992 Square array, read by ascending antidiagonals, of the crystal ball sequences for the root lattices of type C_n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 19, 25, 7, 1, 1, 33, 85, 49, 9, 1, 1, 51, 225, 231, 81, 11, 1, 1, 73, 501, 833, 489, 121, 13, 1, 1, 99, 985, 2471, 2241, 891, 169, 15, 1, 1, 129, 1765, 6321, 8361, 4961, 1469, 225, 17, 1
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

The lattice C_n consists of all integer lattice points v = (x_1,...,x_n) in Z^n such that the sum x_1 + ... + x_n is even. Let ||v|| = 1/2 * Sum_{i = 1..n} |x_i|; this defines a norm on C_n. The k-th term of the crystal ball sequence of C_n gives the number of lattice points v in C_n with ||v|| <= k [Bacher et al.]. The case n = 2 is illustrated in the Example section below.
This array has a remarkable relationship with the constant log(2). The row, column and (conjecturally) the diagonal entries of the array occur in series acceleration formulas for log(2) (see the Formula section below for some examples).
See A103884 for the table of coordination sequences of the C_n lattices. For the crystal ball sequences for the A_n and D_n lattices see A108625 and A108553 respectively. For the crystal ball sequences for the product lattices A_1 x ... x A_1(n copies) and A_n x A_n see A008288 and A143007 respectively.

Examples

			The square array begins
n\k|0...1....2.....3.....4......5
=================================
.0.|1...1....1.....1.....1......1
.1.|1...3....5.....7.....9.....11
.2.|1...9...25....49....81....121 A016754
.3.|1..19...85...231...489....891 A063496
.4.|1..33..225...833..2241...4961 A142993
.5.|1..51..501..2471..8361..22363 A142994
...
Triangular array begins
n\k|0...1...2...3...4...5
=========================
.0.|1
.1.|1...1
.2.|1...3...1
.3.|1...9...5...1
.4.|1..19..25...7...1
.5.|1..33..85..49...9...1
Case n = 2: The C_2 lattice consists of all integer lattice points v = (x,y) in Z x Z such that x + y is even, equipped with the taxicab type norm ||v|| = 1/2 * (|x| + |y|). There are 8 lattice points (marked with a 1 on the figure below) satisfying ||v|| = 1 and 16 lattice points (marked with a 2 on the figure) satisfying ||v|| = 2. Hence the crystal ball sequence for the C_2 lattice (row 2 of the table) begins 1, 1+8 = 9, 1+8+16 = 25, ... .
. . . . . . . . . . .
. . . . . 2 . . . . .
. . . . 2 . 2 . . . .
. . . 2 . 1 . 2 . . .
. . 2 . 1 . 1 . 2 . .
. 2 . 1 . 0 . 1 . 2 .
. . 2 . 1 . 1 . 2 . .
. . . 2 . 1 . 2 . . .
. . . . 2 . 2 . . . .
. . . . . 2 . . . . .
. . . . . . . . . . .
		

Crossrefs

Programs

  • Maple
    with combinat: T := (n,k) -> add(binomial(2n,2i)*binomial(k+i,n),i = 0..n): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;
  • Mathematica
    t[n_, k_] := Sum[ Binomial[2*n, 2*i]*Binomial[k+i, n], {i, 0, n}]; Table[t[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)

Formula

T(n,k) = Sum_{i = 0..n} C(2*n,2*i)*C(k+i,n).
O.g.f. for row n: 1/(1-x)^(n+1) * Sum_{k = 0..n} C(2*n,2*k)*x^k = 1/(1-x) * T(n,(1+x)/(1-x)), where T(n,x) denotes the Chebyshev polynomial of the first kind.
O.g.f. for the array: 1/(1-x) * {(1-t) - x*(1+t)}/{(1-t)^2 - x*(1+t)^2} = (1+x+x^2+x^3+...) + (1+3*x+5*x^2+7*x^3+...)*t + (1+9*x+25*x^2+49*x^3+...)*t^2 + ... .
Row n of the array has the form [p_n(0),p_n(1),p_n(2),...], where the polynomial function p_n(x) = Sum_{k = 0..n} C(2*n,2*k)*C(x+k,n). The first few are p_0(x) = 1, p_1(x) = 2*x+1, p_2(x) = (2*x+1)^2, p_3(x) = (2*x+1)*(8*x^2+8*x+3)/3 and p_4(x) = (2*x+1)^2*(4*x^2+4*x+3)/3.
Alternative expressions for p_n(x) include p_n(x) = Sum_{k = 0..n} 2^(2*k)*n/(n+k)*C(n+k,2*k)*C(x,k) and p_n(x) = Sum_{k = 1..n} 2^(k-1)*C(n-1,k-1)*C(2*x+1,k).
The polynomials p_n(x) satisfy the 3-term recurrence relation n*p_n(x) = 2*(2*x+1)*p_(n-1)(x)+(n-2)*p(n-2)(x) for n >= 2; their generating function is 1/2*((1+t)/(1-t))^(2*x+1) = 1/2 + (2*x+1)*t + (2*x+1)^2*t^2 + (2*x+1)*(8*x^2+8*x+3)/3*t^3 + ... . Thus p_n(x) is, apart from a constant factor, the Meixner polynomial of the first kind M_n(2*x+1;b,c) at b = 0, c = -1. Compare with A142979.
The polynomial p_n(x) is the unique polynomial solution to the difference equation (2*x+1)*{f(x+1/2) - f(x-1/2)} = 2*n*f(x), normalized so that f(0) = 1. The function p_n(x) is also the unique polynomial solution to the difference equation (2*x+1)*{(x+1)*f(x+1) + x*f(x-1)} = ((2*x+1)^2 + 2*n^2)*f(x), normalized so that f(0) = 1.
The zeros of p_n(x) lie on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials p_n(x-1), n = 1,2,3,..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p.4 of [BUMP et al.]).
For n > 0, the entries in row n of the array occur in series acceleration formulas for log(2): 2*log(2) = 1 + (1/2 - 1/6 +...+(-1)^n/(n*(n-1))) + (-1)^(n+1)*Sum_{k >= 1} 1/(k*T(n,k-1)*T(n,k)). For example, the fourth row of the table (n = 3) gives 2*log(2) = 4/3 + 1/(1*1*19) + 1/(2*19*85) + 1/(3*85*231) + ... .
The corresponding result for column k is 2*log(2) = 1 + (1/(1*3) + 1/(2*3*5) +...+ 1/(k*(2*k-1)*(2k+1)) + (2*k+1)*Sum_{n >= 1} (-1)^(n+1)/(n*(n+1)*T(n,k)* T(n+1,k)).
For example, the third column of the table (k = 2) gives 2*log(2) = 41/30 + 5*(1/(1*2*5*25) - 1/(2*3*25*85) + 1/(3*4*85*225) - ... ).
For the main diagonal calculation suggests the result: 2*log(2) = 4/3 + Sum_{n >= 1} (-1)^(n+1)*(5*n+3)/(n*(n+1)*T(n,n)*T(n+1,n+1)).
Similar series acceleration formulas for log(2) come from the row, column and diagonal entries of the square array of Delannoy numbers, A008288 (which may viewed as the array of crystal ball sequences for the product lattices A_1 x...x A_1). For corresponding results for the constants zeta(2) and zeta(3) see A108625 and A143007 respectively.

A201552 Square array read by diagonals: T(n,k) = number of arrays of n integers in -k..k with sum equal to 0.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 19, 19, 1, 9, 37, 85, 51, 1, 11, 61, 231, 381, 141, 1, 13, 91, 489, 1451, 1751, 393, 1, 15, 127, 891, 3951, 9331, 8135, 1107, 1, 17, 169, 1469, 8801, 32661, 60691, 38165, 3139, 1, 19, 217, 2255, 17151, 88913, 273127, 398567, 180325, 8953, 1
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Equivalently, the number of compositions of n*(k + 1) into n parts with maximum part size 2*k+1. - Andrew Howroyd, Oct 14 2017

Examples

			Some solutions for n=7, k=3:
..1...-2....1...-1....1...-3....0....0....1....2....3...-3....0....2....1....0
.-1....2...-2....2....2....2...-1....0....2....2...-2...-1...-2...-1....2...-1
.-3...-1....1...-3....2....1....0....1....3....0....2....0...-1....2...-2...-1
..0....3....3....3...-2...-2....3....3...-3...-3....0...-1...-1...-1....0....3
..2...-1...-1...-1...-3....0...-3...-2....1...-1...-1....1....1....0....3...-1
..2...-1...-3....0....2....3....0....1...-2....1....1....1....3...-2...-3...-3
.-1....0....1....0...-2...-1....1...-3...-2...-1...-3....3....0....0...-1....3
Table starts:
.   1,      1,       1,        1,        1,         1,...
.   3,      5,       7,        9,       11,        13,...
.   7,     19,      37,       61,       91,       127,...
.  19,     85,     231,      489,      891,      1469,...
.  51,    381,    1451,     3951,     8801,     17151,...
. 141,   1751,    9331,    32661,    88913,    204763,...
. 393,   8135,   60691,   273127,   908755,   2473325,...
.1107,  38165,  398567,  2306025,  9377467,  30162301,...
.3139, 180325, 2636263, 19610233, 97464799, 370487485,...
		

Crossrefs

Programs

  • Maple
    seq(print(seq(add((-1)^i*binomial(n, i)*binomial((k+1)*n-(2*k+1)*i-1, n-1), i = 0..floor((1/2)*n)), k = 1..10)), n = 1..10); # Peter Bala, Oct 16 2024
  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}];  T[n_, k_] := comps[n*(k + 1), 2*k + 1, n]; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    comps(r, m, k)=sum(i=0, floor((r-k)/m), (-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));
    T(n,k) = comps(n*(k+1), 2*k+1, n); \\ Andrew Howroyd, Oct 14 2017

Formula

Empirical: T(n,k) = Sum_{i=0..floor(k*n/(2*k+1))} (-1)^i*binomial(n,i)* binomial((k+1)*n-(2*k+1)*i-1,n-1).
The above empirical formula is true and can be derived from the formula for the number of compositions with given number of parts and maximum part size. - Andrew Howroyd, Oct 14 2017
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 3*k^2 + 3*k + 1
T(4,k) = (16/3)*k^3 + 8*k^2 + (14/3)*k + 1
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (185/12)*k^2 + (35/6)*k + 1
T(6,k) = (88/5)*k^5 + 44*k^4 + 46*k^3 + 25*k^2 + (37/5)*k + 1
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (2275/18)*k^4 + (357/4)*k^3 + (6643/180)*k^2 + (259/30)*k + 1
T(m,k) = (1/Pi)*integral_{x=0..Pi} (sin((k+1/2)x)/sin(x/2))^m dx; for the proof see Dirichlet Kernel link; so f(m,n) = (1/Pi)*integral_{x=0..Pi} (Sum_{k=-n..n} exp(I*k*x))^m dx = sum(integral(exp(I(k_1+...+k_m).x),x=0..Pi)/Pi,{k_1,...,k_m=-n..n}) = sum(delta_0(k1+...+k_m),{k_1,...,k_m=-n..n}) = number of arrays of m integers in -n..n with sum zero. - Yalcin Aktar, Dec 03 2011
T(n, k) = the constant term in the expansion of (x^(-k) + ... + x^(-1) + 1 + x + ... + x^k)^n = the coefficient of x^(k*n) (i.e., the central coefficient) in the expansion of (1 + x + ... + x^(2*k))^n = the coefficient of x^(k*n) in the expansion of ( (1 - x^(2*k+1))/(1 - x) )^n. Expanding the binomials and collecting terms gives the empirical formula above. - Peter Bala, Oct 16 2024

A063494 a(n) = (2*n - 1)*(7*n^2 - 7*n + 3)/3.

Original entry on oeis.org

1, 17, 75, 203, 429, 781, 1287, 1975, 2873, 4009, 5411, 7107, 9125, 11493, 14239, 17391, 20977, 25025, 29563, 34619, 40221, 46397, 53175, 60583, 68649, 77401, 86867, 97075, 108053, 119829, 132431, 145887, 160225, 175473, 191659, 208811, 226957, 246125, 266343, 287639
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

Interpret A176271 as an infinite square array read by antidiagonals, with rows 1,5,11,19,...; 3,9,17,27,... and so on. The sum of the terms in the n X n upper submatrix are s(n) = 1, 18, 93, 296, ... = n^2*(7*n^2-1)/6, and a(n) = s(n) - s(n-1) are the first differences. - J. M. Bergot, Jun 27 2013

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n - 1)*(7*n^2 - 7*n + 3)/3: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2*n - 1)*(7*n^2 - 7*n + 3)/3, {n,1,30}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,17,75,203}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(7*n^2 - 7*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+21*x^2+14*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: x*(1+x)*(1+12*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (-3 + 6*x + 21*x^2 + 14*x^3)*exp(x)/3 + 1. - G. C. Greubel, Dec 01 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, May 11 2023

A063491 a(n) = (2*n - 1)*(3*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 12, 50, 133, 279, 506, 832, 1275, 1853, 2584, 3486, 4577, 5875, 7398, 9164, 11191, 13497, 16100, 19018, 22269, 25871, 29842, 34200, 38963, 44149, 49776, 55862, 62425, 69483, 77054, 85156, 93807, 103025, 112828, 123234, 134261, 145927, 158250, 171248, 184939
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

A triangle has sides of lengths 6*n-3, 6*n^2-6*n+4, and 6*n^2-6*n+7; for n>2 its area is 6*sqrt(a(n)^2 - 1). - J. M. Bergot, Aug 30 2013
[The source of this is using (n,n+1), (n+1,n+2), and (n+2,n+3) as (a,b) in the creation of three Pythagorean triangles with sides b^2-a^2, 2*a*b, and a^2+b^2. Combine the three respective sides to create a new larger triangle, then find its area. It is not simply working backwards from the sequence. As well, the sequence has this as its first comment to show that the numbers are actually doing something to find a solution.]

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(3*n^2 -3*n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,12,50,133},40] (* Harvey P. Dale, Jun 05 2016 *)
    Table[(2*n-1)*(3*n^2 -3*n +2)/2, {n,1,30}] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(3*n^2 - 3*n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • R
    a <- c(0, 1, 9, 38, 110)
    for(n in (length(a)+1):40)
      a[n] <- +4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4]
    a [Yosu Yurramendi, Sep 04 2013]
    

Formula

G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -1*a(n-4) n > 3, a(1)=1, a(2)=12, a(3)=50, a(4)=133. - Yosu Yurramendi, Sep 04 2013
E.g.f.: (-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017
From Bruce J. Nicholson, Jun 17 2020: (Start)
a(n) = A005448(n) * A005408(n-1).
a(n) = A004188(n) + A004188(n-1). (End)

A063492 a(n) = (2*n - 1)*(11*n^2 - 11*n + 6)/6.

Original entry on oeis.org

1, 14, 60, 161, 339, 616, 1014, 1555, 2261, 3154, 4256, 5589, 7175, 9036, 11194, 13671, 16489, 19670, 23236, 27209, 31611, 36464, 41790, 47611, 53949, 60826, 68264, 76285, 84911, 94164, 104066, 114639, 125905, 137886, 150604, 164081, 178339, 193400, 209286, 226019
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

Formula

G.f.: x*(1+x)*(1 + 9*x + x^2)/(1-x)^4. - Colin Barker, Apr 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Dec 16 2015
E.g.f.: (-6 + 12*x + 33*x^2 + 22*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A063493 a(n) = (2*n-1)*(13*n^2-13*n+6)/6.

Original entry on oeis.org

1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
  • Mathematica
    Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *)
    LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • Python
    A063493_list, m = [], [26, -13, 2, 1]
    for _ in range(10**2):
        A063493_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    

Formula

G.f.: x*(1+x)*(1+11*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Dec 16 2015
E.g.f.: (-6 + 12*x + 39*x^2 + 26*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017
Previous Showing 11-20 of 48 results. Next