cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 76 results. Next

A282060 Coefficients in q-expansion of E_4*(E_2*E_4 - E_6)/720, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 258, 6564, 66052, 390630, 1693512, 5764808, 16909320, 43066413, 100782540, 214358892, 433565328, 815730734, 1487320464, 2564095320, 4328785936, 6975757458, 11111134554, 16983563060, 25801892760, 37840199712, 55304594136, 78310985304, 110992776480
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A013955 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^8*6^1 + 2^8*3^1 + 3^8*2^1 + 6^8*1^1 = 1693512.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), this sequence (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282101 (E_2*E_4^2), A013974 (E_4*E_6 = E_10).

Programs

  • Mathematica
    terms = 25;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*(E2[x]*E4[x] - E6[x])/720 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[7, n], {n, 0, 24}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^8*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 7)) \\ Andrew Howroyd, Jul 25 2018

Formula

G.f.: phi_{8, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282101(n) - A013974(n))/720. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^8 + p = A196288(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A013955(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(8) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-8). (End)
G.f. Sum_{k>=1} k^8*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A282050 Coefficients in q-expansion of (E_4^2 - E_2*E_6)/1008, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 66, 732, 4228, 15630, 48312, 117656, 270600, 533637, 1031580, 1771572, 3094896, 4826822, 7765296, 11441160, 17318416, 24137586, 35220042, 47045900, 66083640, 86124192, 116923752, 148035912, 198079200, 244218775, 318570252, 389021400, 497449568, 594823350
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 23 2018

Examples

			a(6) = 1^6*6^1 + 2^6*3^1 + 3^6*2^1 + 6^6*1^1 = 48312.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), this sequence (phi_{6, 1}), A282060 (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145095 (-q*E'_6), A008410 (E_4^2 = E_8), A282096 (E_2*E_6).

Programs

  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E4[x]^2 - E2[x]*E6[x])/1008 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^6*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n * sigma(n, 5)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = A145095(n)/504 for n > 0.
G.f.: phi_{6, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A008410(n) - A282096(n))/1008. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^6 + p = A131472(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A001160(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(6) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-6). (End)
G.f. Sum_{k>=1} k^6*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A282097 Coefficients in q-expansion of (3*E_2*E_4 - 2*E_6 - E_2^3)/1728, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 12, 36, 112, 150, 432, 392, 960, 1053, 1800, 1452, 4032, 2366, 4704, 5400, 7936, 5202, 12636, 7220, 16800, 14112, 17424, 12696, 34560, 19375, 28392, 29160, 43904, 25230, 64800, 30752, 64512, 52272, 62424, 58800, 117936, 52022, 86640, 85176, 144000, 70602
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^3*6^2 + 2^3*3^2 + 3^3*2^2 + 6^3*1^2 = 432.
		

Crossrefs

Cf. this sequence (phi_{3, 2}), A282099 (phi_{5, 2}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282018 (E_2^3), A282019 (E_2*E_4).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), this sequence (n^2*sigma(n)), A282211 (n^3*sigma(n)).
Cf. A222171.

Programs

  • Magma
    [0] cat [n^2*DivisorSigma(1, n): n in [1..50]]; // Vincenzo Librandi, Mar 01 2018
  • Mathematica
    a[0]=0;a[n_]:=(n^2)*DivisorSigma[1,n];Table[a[n],{n,0,41}] (* Indranil Ghosh, Feb 21 2017 *)
    terms = 42; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[(3*Ei[2]*Ei[4] - 2*Ei[6] - Ei[2]^3)/1728 + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    a(n) = if (n==0, 0, n^2*sigma(n)); \\ Michel Marcus, Feb 21 2017
    

Formula

a(n) = (3*A282019(n) - 2*A013973(n) - A282018(n))/1728.
G.f.: phi_{3, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = n^2*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: Sum_{k>=1} k^3*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, May 02 2018
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-3).
Sum_{k=1..n} a(k) ~ (Pi^2/24) * n^4. (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= i, j, k <= n} sigma_2( gcd(i, j, k, n) ).
a(n) = Sum_{1 <= i, j <= n} sigma_3( gcd(i, j, n) ).
a(n) = Sum_{d divides n} sigma_2(d) * J_3(n/d) = Sum_{d divides n} sigma_3(d) * J_2(n/d), where the Jordan totient functions J_2(n) = A007434(n) and J_3(n) = A059376(n). (End)

A327153 Number of divisors d of n such that sigma(d)*d is equal to n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A064987.

Examples

			336 has 20 divisors: [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]. Only two of them, d=12 and d=14, satisfy sigma(d) = (336/d), thus a(336) = 2.
		

Crossrefs

Cf. A000203, A064987, A327165 (positions of nonzero terms).
Cf. also A324539.

Programs

  • PARI
    A327153(n) = sumdiv(n, d, (n==d*sigma(d)));

Formula

a(n) = Sum_{d|n} [A000203(d)*d == n], where [ ] is the Iverson bracket.

A328259 a(n) = n * sigma_2(n).

Original entry on oeis.org

1, 10, 30, 84, 130, 300, 350, 680, 819, 1300, 1342, 2520, 2210, 3500, 3900, 5456, 4930, 8190, 6878, 10920, 10500, 13420, 12190, 20400, 16275, 22100, 22140, 29400, 24418, 39000, 29822, 43680, 40260, 49300, 45500, 68796, 50690, 68780, 66300, 88400, 68962, 105000, 79550, 112728, 106470
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Comments

Moebius transform of A027847.

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSigma[2, n], {n, 1, 45}]
    nmax = 45; CoefficientList[Series[Sum[k^3 x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = n*sigma(n, 2); \\ Michel Marcus, Dec 02 2020

Formula

G.f.: Sum_{k>=1} k^3 * x^k / (1 - x^k)^2.
G.f.: Sum_{k>=1} k * x^k * (1 + 4 * x^k + x^(2*k)) / (1 - x^k)^4.
Dirichlet g.f.: zeta(s - 1) * zeta(s - 3).
Sum_{k=1..n} a(k) ~ zeta(3) * n^4 / 4. - Vaclav Kotesovec, Oct 09 2019
Multiplicative with a(p^e) = (p^(3*e+2) - p^e)/(p^2 - 1). - Amiram Eldar, Dec 02 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4 - (2*n^4 - 4*n^3 - 3*n^2 - n)*q^n - (8*n^3 - 4*n)*q^(2*n) + (2*n^4 + 4*n^3 - 3*n^2 + n)*q^(3*n) - n^4*q^(4*n) )/(1 - q^n)^4. Apply the operator x*d/dx twice, followed by the operator q*d/dq once, to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{k = 1..n} sigma_3( gcd(k, n) ) = Sum_{d divides n} sigma_3(d) * phi(n/d). - Peter Bala, Jan 19 2024
a(n) = Sum_{1 <= i, j, k <= n} sigma_1( gcd(i, j, k, n) ) = Sum_{d divides n} sigma_1(d) * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024

A000441 a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 9, 34, 95, 210, 406, 740, 1161, 1920, 2695, 4116, 5369, 7868, 9690, 13640, 16116, 22419, 25365, 34160, 38640, 50622, 55154, 73320, 77225, 100100, 107730, 135576, 141085, 182340, 184760, 233616, 243408, 297738, 301420, 385110, 377511, 467210, 478842
Offset: 1

Views

Author

Keywords

Comments

Apart from initial zero this is the convolution of A340793 and A143128. - Omar E. Pol, Feb 16 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1);
    f:=e->[seq(S(n,e),n=1..30)];f(1); # N. J. A. Sloane, Jul 03 2015
  • Mathematica
    a[n_] := Sum[k*DivisorSigma[1, k]*DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, k*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
    
  • PARI
    a(n) = my(f = factor(n)); ((n - 6*n^2) * sigma(f) + 5*n * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
    
  • Python
    from sympy import divisor_sigma
    def A000441(n): return (n*(1-6*n)*divisor_sigma(n)+5*n*divisor_sigma(n,3))//24 # Chai Wah Wu, Jul 25 2024

Formula

Convolution of A000203 with A064987. - Sean A. Irvine, Nov 14 2010
G.f.: x*f(x)*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 28 2018
a(n) = (n/24 - n^2/4)*sigma_1(n) + (5*n/24)*sigma_3(n). - Ridouane Oudra, Sep 17 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / 2160. - Vaclav Kotesovec, May 09 2022

Extensions

More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014

A069070 Numbers n such that n*sigma(n) is a perfect square.

Original entry on oeis.org

1, 40, 81, 135, 216, 224, 400, 819, 1372, 3240, 3744, 4650, 6318, 18144, 21700, 27930, 30240, 32400, 32760, 69312, 71148, 91694, 111132, 174592, 175500, 185220, 215472, 241395, 278318, 293907, 327600, 336675, 362700, 386232, 515450, 958737
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Also n such that the squarefree part of n (A007913) equals the squarefree part of sigma(n), A355928.
Also n such that abundancy of n, sigma(n)/n is a rational square. - Michel Marcus, Oct 06 2013
See A230043, resp. A230538, for n whose abundancy is a rational cube, resp. fourth power. - M. F. Hasler, Nov 02 2013

Crossrefs

Cf. A008848, A027687 (subsequences).
Cf. also A230043, A230538.
Positions of 0's in A355929.

Programs

  • Mathematica
    Select[Range[1000000],IntegerQ[Sqrt[# DivisorSigma[1,#]]]&] (* Harvey P. Dale, Dec 24 2012 *)
  • PARI
    for(n=1,1000000,if(issquare(n*sigma(n)),print1(n,",")))
    
  • PARI
    isok(n) = issquare(sigma(n)/n); \\ Michel Marcus, Oct 06 2013

Extensions

More terms from Rick L. Shepherd, Apr 07 2002

A076835 Coefficients in expansion of Eisenstein series -q*E'_2.

Original entry on oeis.org

24, 144, 288, 672, 720, 1728, 1344, 2880, 2808, 4320, 3168, 8064, 4368, 8064, 8640, 11904, 7344, 16848, 9120, 20160, 16128, 19008, 13248, 34560, 18600, 26208, 25920, 37632, 20880, 51840, 23808, 48384, 38016, 44064, 40320, 78624, 33744, 54720, 52416, 86400
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2009

Keywords

Examples

			G.f. = 24*q + 144*q^2 + 288*q^3 + 672*q^4 + 720*q^5 + ...
		

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A064987.
Cf. this sequence (-q*E'_2), A145094 (q*E'_4), A145095 (-q*E'_6).

Programs

  • Maple
    with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60),q,61); end; -diff(E(2),q);
  • Mathematica
    terms = 41;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    -(E2[x]^2 - E4[x])/12 + O[x]^terms // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 23 2018 *)
    nmax = 40; Rest[CoefficientList[Series[24*x*Sum[k^2*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = 24 * n * sigma(n); \\ Amiram Eldar, Jan 07 2025

Formula

q*E'_2 = (E_2^2-E_4)/12.
a(n) = 24*A064987(n).
G.f.: 24*x*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017

A280022 Expansion of phi_{5, 4}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 48, 324, 1792, 3750, 15552, 19208, 61440, 85293, 180000, 175692, 580608, 399854, 921984, 1215000, 2031616, 1503378, 4094064, 2606420, 6720000, 6223392, 8433216, 6716184, 19906560, 12109375, 19192992, 21257640, 34420736, 21218430, 58320000, 29552672
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. this sequence (phi_{5, 4}), A280025 (phi_{7, 4}).
Cf. A282101 (E_2*E_4^2), A282595 (E_2^2*E_6), A282586 (E_2^3*E_4), A013974 (E_4*E_6 = E_10), A282431 (E_2^5).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), A282097 (n^2*sigma(n)), A282211 (n^3*sigma(n)), this sequence (n^4*sigma(n)).
Cf. A353908.

Programs

  • Mathematica
    Table[n^4 * DivisorSigma[1, n], {n, 0, 32}] (* Amiram Eldar, Oct 31 2023 *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n^4 * sigma(n)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = n^4*A000203(n) for n > 0.
a(n) = (15*A282101(n) - 20*A282595(n) + 10*A282586(n) - 4*A013974(n) - A282431(n))/20736.
Sum_{k=1..n} a(k) ~ c * n^6, where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(4*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-4)*zeta(s-5). (End)
G.f.: Sum_{k>=1} k^4*x^k*(1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6. - Vaclav Kotesovec, Aug 02 2025

A282211 Coefficients in q-expansion of (6*E_2^2*E_4 - 8*E_2*E_6 + 3*E_4^2 - E_2^4)/6912, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 24, 108, 448, 750, 2592, 2744, 7680, 9477, 18000, 15972, 48384, 30758, 65856, 81000, 126976, 88434, 227448, 137180, 336000, 296352, 383328, 292008, 829440, 484375, 738192, 787320, 1229312, 731670, 1944000, 953312, 2064384, 1724976
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^4*6^3 + 2^4*3^3 + 3^4*2^3 + 6^4*1^3 = 2592.
		

Crossrefs

Cf. this sequence (phi_{4, 3}), A282213 (phi_{6, 3}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_4^2 = E_8), A282210 (E_2^4).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), A282097 (n^2*sigma(n)), this sequence (n^3*sigma(n)).

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^3)*DivisorSigma[1,n];Table[a[n],{n,0,33}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    a(n) = if (n==0, 0, n^3*sigma(n)); \\ Michel Marcus, Feb 21 2017

Formula

G.f.: phi_{4, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (6*A282208(n) - 8*A282096(n) + 3*A008410(n) - A282210(n))/6912.
a(n) = n^3*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: A(q) = Sum_{n >= 1} n^3*q^n*(q^(3*n) + 11*q^(2*n) + 11*q^n + 1)/(1 - q^n)^5. A faster converging series may be found by applying the operator x*d/dx once to equation 5 in Arndt, setting x = 1, and then applying the operator q*d/dq three times to the resulting equation. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-4). (End)
G.f.: A(q) = Sum_{n >= 1} n^4*q^n*(q^(2*n) + 4*q^n + 1)/(1 - q^n)^4. - Mamuka Jibladze, Aug 27 2024
Previous Showing 11-20 of 76 results. Next