cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A273015 Ramanujan's largely composite numbers having 3 as the greatest prime divisor.

Original entry on oeis.org

3, 6, 12, 18, 24, 36, 48, 72, 96, 108
Offset: 1

Views

Author

Vladimir Shevelev, May 13 2016

Keywords

Comments

Theorem. Ramanujan's largely composite numbers (A067128) having the greatest prime divisor p_k = prime(k) do not exceed Product_{2 <= p <= p_k} p^((2*ceiling(log_p(p_(k + 1)) - 1).
Proof. Let N be in A067128 with prime power factorization 2^l_1 * 3^l_2 * ... * p_k^l_k.
First let us show that l_1 <= 2x_1-1 such that 2^x_1 > p_(k+1).
Indeed, consider N_1 = 2^(l_1-x_1)*3^l_2*...*p_k^l_k*p_(k+1).
Since 2^x_1 > p_(k+1) then N_1
But d(N_1) > d(N) if l_1 >= 2*x_1, so l_1 <= 2x_1-1.
Analogously we find l_i <= 2x_i-1 if p_i^x_i > p_(k+1), i <= k.
Therefore N <= 2^(2*x_1-1)*3^(2*x_2-1)*...* p_k^(2*x_k-1) and the theorem easily follows.
QED
The inequality of the theorem gives a way to find the full sequence for every p_k. In particular, in case p_k = 2 we have the sequence {2, 4, 8}. For other cases see A273016, A273018.

Crossrefs

Cf. A067128, A065119 (the intersection of these two sequences is the present sequence). Cf. also A003586, A273016, A273018.

Programs

  • Mathematica
    a = {}; b = {0}; Do[If[# >= Max@ b, AppendTo[a, k] && AppendTo[b, #]] &@ DivisorSigma[0, k], {k, 10^7}]; Select[a, FactorInteger[#][[-1, 1]] == 3 &] (* Michael De Vlieger, May 13 2016 *)

A355532 Maximal augmented difference between adjacent reversed prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 2, 1, 7, 2, 8, 3, 3, 5, 9, 2, 3, 6, 2, 4, 10, 2, 11, 1, 4, 7, 3, 2, 12, 8, 5, 3, 13, 3, 14, 5, 2, 9, 15, 2, 4, 3, 6, 6, 16, 2, 3, 4, 7, 10, 17, 2, 18, 11, 3, 1, 4, 4, 19, 7, 8, 3, 20, 2, 21, 12, 2, 8, 4, 5, 22, 3, 2
Offset: 1

Author

Gus Wiseman, Jul 14 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

Examples

			The reversed prime indices of 825 are (5,3,3,2), with augmented differences (3,1,2,2), so a(825) = 3.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Prepending 1 to the positions of 1's gives A000079.
Positions of first appearances are A008578.
Positions of 2's are A065119.
The non-augmented version is A286470, also A355526.
The non-augmented minimal version is A355524, also A355525.
The minimal version is A355531.
Row maxima of A355534, which has Heinz number A325351.
A001222 counts prime indices, distinct A001221.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A086761 Numbers k such that k-th cyclotomic polynomial has exactly 5 nonzero terms.

Original entry on oeis.org

5, 10, 20, 25, 40, 50, 80, 100, 125, 160, 200, 250, 320, 400, 500, 625, 640, 800, 1000, 1250, 1280, 1600, 2000, 2500, 2560, 3125, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 15625, 16000, 20000, 20480, 25000, 25600, 31250, 32000
Offset: 1

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 02 2003

Keywords

Comments

A206787(a(n)) = 6. - Reinhard Zumkeller, Feb 12 2012
All terms have the form 2^a 5^b with a >= 0 and b > 0. - T. D. Noe, Feb 13 2012
If the above holds for all terms then this sequence is 5 * A003592. - David A. Corneth, Jul 04 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Count[CoefficientList[Cyclotomic[#, x], x], 0] == EulerPhi[#] - 4 &] (* T. D. Noe, Feb 13 2012 *)
  • PARI
    is(n) = v = Vec(polcyclo(n)); sum(i=1,#v,v[i]!=0) == 5 \\ David A. Corneth, Jul 04 2018

Extensions

More terms from T. D. Noe, Feb 13 2012

A301461 Number of integers less than or equal to n whose largest prime factor is 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Author

Ralph-Joseph Tatt, Mar 21 2018

Keywords

Comments

a(n) increases when n has the form 2^a*3^b, with a >= 0 and b > 0.
A distinct sequence can be generated for each prime number; this sequence is for the prime number 3. For an example using another prime number see A301506.

Examples

			a(12) = a(2^2 * 3^1); 3 is the largest prime factor, so a(12) exceeds the previous term by 1. For a(13), 13 is a prime, so there is no increase from the previous term.
		

Crossrefs

Programs

  • MATLAB
    clear;clc;
    prime = 3;
    limit = 10000;
    largest_divisor = ones(1,limit+1);
    for k = 0:limit
        f = factor(k);
        largest_divisor(k+1) = f(end);
    end
    for i = 1:limit+1
        FQN(i) = sum(largest_divisor(1:i)==prime);
    end
    output = [0:limit;FQN]'
    
  • Mathematica
    Accumulate@ Array[Boole[FactorInteger[#][[-1, 1]] == 3] &, 80, 0] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    gpf(n) = if (n<=1, n, vecmax(factor(n)[,1]));
    a(n) = sum(k=1, n, gpf(k)==3); \\ Michel Marcus, Mar 27 2018

Formula

From David A. Corneth, Mar 27 2018: (Start)
a(n) - a(n - 1) = 1 if and only if n is in 3 * A003586. If n isn't in that sequence then a(n) = a(n - 1).
a(3 * n + b) = A071521(n), n > 0, 0 <= b < 3. (End)
a(n) = A071521(n) - A070939(n). - Ridouane Oudra, Mar 24 2025

A382487 The number of divisors of n whose largest prime factor is 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 8, 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 3, 0, 0, 1
Offset: 1

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

The number of 3-smooth divisors of n that are not powers of 2.
The number of terms of A065119 that divide n.

Programs

  • Mathematica
    a[n_] := (IntegerExponent[n, 2] + 1) * IntegerExponent[n, 3]; Array[a, 100]
  • PARI
    a(n) = (valuation(n, 2) + 1) * valuation(n, 3);

Formula

a(n) = A072078(n) - A001511(n).
a(n) = A001511(n) * A007949(n).
a(n) = 0 if and only if n is in A001651.
a(n) = 1 if and only if n is in A306771.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.
In general, the asymptotic mean of the number prime(k+1)-smooth divisors of n that are not prime(k)-smooth, for k >= 1, is (1/(prime(k+1)-1)) * Product_{i=1..k} (prime(i)/(prime(i)-1)).
Dirichlet g.f.: (zeta(s)/(1-1/2^s))*(1/(1-1/3^s) - 1).

A085459 Numbers k such that k-th cyclotomic polynomial has exactly 3 positive coefficients.

Original entry on oeis.org

3, 9, 10, 20, 27, 40, 50, 80, 81, 100, 160, 200, 243, 250, 320, 400, 500, 640, 729, 800, 1000, 1250, 1280, 1600, 2000, 2187, 2500, 2560, 3200, 4000, 5000, 5120, 6250, 6400, 6561, 8000, 10000, 10240, 12500, 12800, 16000, 19683, 20000, 20480, 25000, 25600
Offset: 1

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 14 2003

Keywords

Comments

Sequence appears to consist of 3^i, i > 0; and 2^i*5^j, i, j > 0. Are there any other terms? - David Wasserman, Feb 01 2005

Examples

			9 is a member because the 9th cyclotomic polynomial is P(x) = x^6+x^3+1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 5000, Count[CoefficientList[Cyclotomic[#, x], x], ?(# > 0 &)] == 3 &] (* _Michael De Vlieger, Oct 26 2017 *)
  • PARI
    n = 0; while (1, n++; p = polcyclo(n, x); d = poldegree(p); c = 0; i = 0; while (c < 4 && i <= d, if (polcoeff(p, i) > 0, c++); i++); if (c == 3, print(n))); \\ David Wasserman, Feb 01 2005

Extensions

More terms from David Wasserman, Feb 01 2005

A280990 Least prime p such that n divides phi(p*n).

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 31, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 31, 31, 2, 67, 17, 71, 3, 37, 19, 13, 5, 41, 7, 43, 11, 31, 23, 47, 3, 7, 5, 103, 13, 53, 3, 11, 7, 19, 29, 59, 31, 61, 31, 7, 2, 131, 67, 67, 17, 139, 71, 71, 3, 73, 37, 31, 19, 463
Offset: 1

Author

Altug Alkan, Jan 12 2017

Keywords

Comments

n*a(n) are 2, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 465, 32, 289, ...
a(n) <= A034694(A007947(n)). If n is in A050384 then a(n) = A034694(n). - Robert Israel, Jan 12 2017

Examples

			a(15) = 31 because 15 does not divide phi(p*15) for p < 31 where p is prime and phi(31*15) = 2*4*30 is divisible by 15.
		

Crossrefs

Cf. A000079, A065119, A086761: for those n such that a(n)=2,3,5. - Michel Marcus, Jan 20 2017

Programs

  • Maple
    f:= proc(n) local p;
        p:= 2;
        while numtheory:-phi(p*n) mod n <> 0 do p:= nextprime(p) od:
        p
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 12 2017
  • Mathematica
    lpp[n_]:=Module[{p=2},While[Mod[EulerPhi[p*n],n]!=0,p=NextPrime[p]];p]; Array[lpp,80] (* Harvey P. Dale, Sep 26 2020 *)
  • PARI
    a(n)=my(k = 1); while (eulerphi(prime(k)*n) % n != 0, k++); prime(k);
    
  • PARI
    a(n)=my(t=n/gcd(eulerphi(n),n)); if(t==1, return(2)); forstep(p=if(t%2,2*t,t)+1, if(isprime(t), t, oo),lcm(t,2), if(isprime(p), return(p))); t \\ Charles R Greathouse IV, Jan 20 2017

Formula

a(p^k) = p for all primes p and k >= 1. - Robert Israel, Jan 12 2017
a(n) << n^5 by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Jan 20 2017

A369209 Numbers whose number of divisors has the largest prime factor 3.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 224, 225, 228
Offset: 1

Author

Amiram Eldar, Jan 16 2024

Keywords

Comments

Subsequence of A059269 and first differs from it at n = 36: A059269(136) = 44 has 15 = 3 * 5 divisors and thus is not a term of this sequence.
Numbers k such that A000005(k) is in A065119.
Numbers k such that A071188(k) = 3.
Equals the complement of A354181, without the terms of A036537 (i.e., complement(A354181) \ A036537).
The asymptotic density of this sequence is Product_{p prime} (1-1/p) * (Sum_{k>=1} 1/p^(A003586(k)-1)) - A327839 = 0.26087647470200496716... .

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; Select[Range[300], gpf[DivisorSigma[0, #]] == 3 &]
  • PARI
    gpf(n) = if(n == 1, 1, vecmax(factor(n)[, 1]));
    is(n) = gpf(numdiv(n)) == 3;

A384184 Order of the permutation of {0,...,n-1} formed by successively swapping elements at i and 2*i mod n, for i = 0,...,n-1.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 2, 8, 3, 4, 5, 4, 6, 4, 6, 16, 4, 6, 9, 8, 4, 10, 28, 8, 10, 12, 9, 8, 14, 12, 12, 32, 5, 8, 70, 12, 18, 18, 24, 16, 10, 8, 7, 20, 210, 56, 126, 16, 110, 20, 60, 24, 26, 18, 120, 16, 9, 28, 29, 24, 30, 24, 60, 64, 6, 10, 33, 16
Offset: 1

Author

Mia Boudreau, May 29 2025

Keywords

Comments

a(2*n) = 2*a(n) since the cycle lengths of the permutation with size 2*n is effectively that of size n twice, doubled. Thus, the LCM/order is doubled.

Examples

			For n = 11, the permutation is {0,3,4,7,8,1,2,9,10,5,6} and it has order a(11) = 5.
		

Programs

  • Python
    from sympy.combinatorics import Permutation
    def a(n):
       L = list(range(n))
       for i in range(n):
           if (j:= (i << 1) % n) != i:
               L[i],L[j] = L[j],L[i]
       return Permutation(L).order() # DarĂ­o Clavijo, Jun 05 2025

Formula

a(2*n) = 2*a(n).
a(2^n) = 2^n.
Conjecture: a(2^n + 2^x) = 2^n * (x-n) if x > n.
a(2^n - 1) = A003418(n-1).
s(2^n + 1) = A000027(n).
a(2*n - 1) = A051732(n).
a(A004626(n)) % 2 = 1.
a(A065119(n)) = n/3.
a(A001122(n)) = (n-1) / 2.
a(A155072(n)) = (n-1) / 4.
a(A001133(n)) = (n-1) / 6.
a(A001134(n)) = (n-1) / 8.
a(A001135(n)) = (n-1) / 10.
a(A225759(n)) = (n-1) / 16.

A367412 Triangle read by rows with all zeros removed where T(n,k) is the number of integer partitions of n with k different semi-sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 3, 1, 5, 3, 2, 1, 4, 7, 2, 1, 1, 6, 7, 6, 2, 1, 6, 10, 6, 7, 1, 7, 12, 11, 8, 3, 1, 6, 16, 11, 17, 3, 2, 1, 10, 14, 20, 19, 10, 2, 1, 1, 7, 22, 17, 31, 14, 7, 2, 1, 9, 22, 27, 37, 22, 11, 6, 1, 10, 24, 27, 51, 32, 16, 15
Offset: 0

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			Triangle begins:
  1
  1  1
  1  2
  1  3  1
  1  3  3
  1  5  3  2
  1  4  7  2  1
  1  6  7  6  2
  1  6 10  6  7
  1  7 12 11  8  3
  1  6 16 11 17  3  2
  1 10 14 20 19 10  2  1
  1  7 22 17 31 14  7  2
  1  9 22 27 37 22 11  6
  1 10 24 27 51 32 16 15
  1 11 27 39 57 43 27 22  4
  1  9 33 34 79 57 36 39  7  2
  1 13 31 51 86 77 45 62 14  4  1
Row n = 9 counts the following partitions:
  (9)  (81)         (711)       (621)      (5211)
       (72)         (6111)      (531)      (4311)
       (63)         (522)       (432)      (4221)
       (54)         (51111)     (33111)    (42111)
       (333)        (441)       (222111)   (3321)
       (111111111)  (411111)    (2211111)  (32211)
                    (3222)                 (321111)
                    (3111111)
                    (22221)
                    (21111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A088922.
The non-binary version (with zeros) is A365658.
The strict non-binary version (with zeros) is A365832.
The corresponding rank statistic is A366739.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366738 counts semi-sums of partitions, non-binary A304792.
A366741 counts semi-sums of strict partitions, non-binary A365925.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Subsets[#, {2}]]]==k&]], {n,10},{k,0,n}],0,2]
Previous Showing 11-20 of 20 results.