cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A176504 a(n) = m + k where prime(m)*prime(k) = semiprime(n).

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 7, 9, 8, 10, 8, 9, 8, 10, 11, 12, 9, 11, 13, 9, 14, 10, 15, 12, 10, 13, 16, 11, 17, 14, 12, 18, 11, 10, 19, 15, 16, 12, 20, 17, 21, 11, 13, 22, 14, 23, 18, 13, 24, 12, 19, 25, 20, 15, 12, 26, 21, 27, 14, 16, 28, 13, 22, 29, 17, 15, 30, 23, 13, 31
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2010

Keywords

Examples

			From _Gus Wiseman_, Dec 04 2020: (Start)
A semiprime (A001358) is a product of any two prime numbers. The sequence of all semiprimes together with their prime indices and weights begins:
   4: 1 + 1 = 2
   6: 1 + 2 = 3
   9: 2 + 2 = 4
  10: 1 + 3 = 4
  14: 1 + 4 = 5
  15: 2 + 3 = 5
  21: 2 + 4 = 6
  22: 1 + 5 = 6
  25: 3 + 3 = 6
  26: 1 + 6 = 7
(End)
		

Crossrefs

A056239 is the version for not just semiprimes.
A087794 gives the product of the same two indices.
A176506 gives the difference of the same two indices.
A338904 puts the n-th semiprime in row a(n).
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    From R. J. Mathar, Apr 20 2010: (Start)
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc:
    A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc:
    A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc:
    A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc:
    A176504 := proc(n) numtheory[pi](A084126(n)) + numtheory[pi](A084127(n)) ; end proc: seq(A176504(n),n=1..80) ; (End)
  • Mathematica
    Table[If[SquareFreeQ[n],Total[PrimePi/@First/@FactorInteger[n]],2*PrimePi[Sqrt[n]]],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)

Formula

a(n) = A056239(A001358(n)) = A338912(n) + A338913(n). - Gus Wiseman, Dec 04 2020
sqrt(n/(log n log log n)) << a(n) << n/log log n. - Charles R Greathouse IV, Apr 17 2024

Extensions

Entries checked by R. J. Mathar, Apr 20 2010

A087794 Products of prime-indices of factors of semiprimes.

Original entry on oeis.org

1, 2, 4, 3, 4, 6, 8, 5, 9, 6, 10, 7, 12, 8, 12, 9, 16, 14, 15, 16, 10, 11, 18, 18, 12, 20, 13, 21, 14, 20, 24, 22, 15, 24, 16, 24, 27, 17, 28, 25, 18, 26, 28, 32, 19, 30, 20, 30, 30, 21, 33, 22, 32, 36, 23, 36, 34, 24, 36, 36, 35, 25, 38, 26, 40, 39, 27, 40, 40, 28, 42, 44, 29
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2003

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 04 2020

Examples

			A001358(20)=57=3*19=A000040(2)*A000040(8), therefore a(20)=2*8=16.
From _Gus Wiseman_, Dec 04 2020: (Start)
The sequence of all semiprimes together with the products of their prime indices begins:
   4: 1 * 1 = 1
   6: 1 * 2 = 2
   9: 2 * 2 = 4
  10: 1 * 3 = 3
  14: 1 * 4 = 4
  15: 2 * 3 = 6
  21: 2 * 4 = 8
  22: 1 * 5 = 5
  25: 3 * 3 = 9
  26: 1 * 6 = 6
(End)
		

Crossrefs

A003963 is the version for not just semiprimes.
A176504 gives the sum of the same two indices.
A176506 gives the difference of the same two indices.
A339361 is the squarefree case.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A289182/A115392 list the positions of odd/even terms of A001358.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A338904 groups semiprimes by weight.

Programs

  • Mathematica
    Table[If[SquareFreeQ[n],Times@@PrimePi/@First/@FactorInteger[n],PrimePi[Sqrt[n]]^2],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)

Formula

a(n) = A003963(A001358(n)) = A338912(n) * A338913(n). - Gus Wiseman, Dec 04 2020

A338900 Difference between the two prime indices of the n-th squarefree semiprime.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 5, 3, 6, 1, 7, 4, 8, 5, 2, 6, 9, 10, 3, 7, 11, 1, 12, 4, 13, 8, 2, 9, 14, 5, 15, 10, 6, 16, 3, 17, 11, 12, 4, 18, 13, 19, 1, 7, 20, 8, 21, 14, 5, 22, 15, 23, 16, 9, 2, 24, 17, 25, 6, 10, 26, 3, 18, 27, 11, 7, 28, 19, 1, 29, 12, 20, 2, 21, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
Is this sequence an anti-run, i.e., are there no adjacent equal parts? I have verified this conjecture up to n = 10^6. - Gus Wiseman, Nov 18 2020

Crossrefs

A176506 is the not necessarily squarefree version.
A338899 has row-differences equal to this sequence.
A338901 gives positions of first appearances.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes.
A002100 and A338903 count partitions using squarefree semiprimes.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A065516 gives first differences of semiprimes.
A166237 gives first differences of squarefree semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A338912 and A338913 give the prime indices of semiprimes.

Programs

  • Mathematica
    -Subtract@@PrimePi/@First/@FactorInteger[#]&/@Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]

Formula

If the n-th squarefree semiprime is prime(x) * prime(y) with x < y, then a(n) = y - x.
a(n) = A270652(n) - A270650(n).

A114403 Triprime gaps. First differences of A014612.

Original entry on oeis.org

4, 6, 2, 7, 1, 2, 12, 2, 1, 5, 2, 11, 3, 2, 2, 5, 1, 2, 14, 6, 1, 3, 3, 5, 4, 2, 1, 7, 1, 5, 8, 9, 1, 5, 1, 10, 1, 5, 1, 1, 2, 1, 7, 4, 2, 2, 5, 12, 5, 10, 8, 1, 5, 2, 4, 2, 1, 1, 9, 3, 3, 5, 2, 5, 2, 4, 3, 2, 1, 1, 4, 2, 18, 6, 2, 4, 3, 7, 1, 5, 5, 2, 9, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 4 = 12-8 where 8 is the first triprime and 12 is the second.
a(2) = 6 = 18-12
a(3) = 2 = 20-18
a(4) = 7 = 27-20
		

Crossrefs

Programs

  • Maple
    is3Alm := proc(n::integer) local ifa,ex,i ; ifa := op(2,ifactors(n)) ; ex := 0 ; for i from 1 to nops(ifa) do ex := ex+ op(2,op(i,ifa)) ; od : if ex = 3 then RETURN(true) ; else RETURN(false) ; fi ; end: A014612 := proc(n::integer) local resul,i; i :=1; resul := 8 ; while i < n do resul := resul + 1 ; if is3Alm(resul) then i := i+1 ; fi ; od ; RETURN(resul) ; end: A114403 := proc(n::integer) RETURN(A014612(n+1)-A014612(n)) ; end: for n from 1 to 160 do printf("%d,",A114403(n)) ; od: # R. J. Mathar, Apr 25 2006
  • Mathematica
    Differences[Select[Range[425], PrimeOmega[#] == 3 &]] (* Jayanta Basu, Jul 01 2013 *)

Formula

a(n) = A014612(n+1) - A014612(n).

Extensions

Corrected and extended by R. J. Mathar, Apr 25 2006

A112141 Product of the first n semiprimes.

Original entry on oeis.org

4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2005

Keywords

Comments

Semiprime analog of primorial (A002110). Equivalent for product of what A062198 is for sum.

Examples

			a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime signatures begins:
                        4: (2)
                       24: (3,1)
                      216: (3,3)
                     2160: (4,3,1)
                    30240: (5,3,1,1)
                   453600: (5,4,2,1)
                  9525600: (5,5,2,2)
                209563200: (6,5,2,2,1)
               5239080000: (6,5,4,2,1)
             136216080000: (7,5,4,2,1,1)
            4495130640000: (7,6,4,2,2,1)
          152834441760000: (8,6,4,2,2,1,1)
         5349205461600000: (8,6,5,3,2,1,1)
       203269807540800000: (9,6,5,3,2,1,1,1)
      7927522494091200000: (9,7,5,3,2,2,1,1)
    364666034728195200000: (10,7,5,3,2,2,1,1,1)
  17868635701681564800000: (10,7,5,5,2,2,1,1,1)
(End)
		

Crossrefs

Partial sums of semiprimes are A062198.
First differences of semiprimes are A065516.
A000040 lists primes, with partial products A002110 (primorials).
A000142 lists factorials, with partial products A000178 (superfactorials).
A001358 lists semiprimes, with partial products A112141 (this sequence).
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial products A339191.
A101048 counts partitions into semiprimes (restricted: A338902).
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    A112141 := proc(n)
        mul(A001358(i),i=1..n) ;
    end proc:
    seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *)
    FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
  • PARI
    a(n)=my(v=vector(n),i,k=3);while(iCharles R Greathouse IV, Apr 04 2013
    
  • Python
    from sympy import factorint
    def aupton(terms):
        alst, k, p = [], 1, 1
        while len(alst) < terms:
            if sum(factorint(k).values()) == 2:
                p *= k
                alst.append(p)
            k += 1
        return alst
    print(aupton(18)) # Michael S. Branicky, Aug 31 2021

Formula

a(n) = Product_{i=1..n} A001358(i).
A001222(a(n)) = 2*n.

A338901 Position of the first appearance of prime(n) as a factor in the list of squarefree semiprimes.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 9, 11, 13, 17, 18, 21, 23, 25, 29, 31, 34, 36, 40, 42, 45, 47, 50, 52, 56, 58, 61, 64, 67, 70, 76, 78, 81, 82, 86, 89, 93, 97, 100, 104, 106, 107, 112, 113, 116, 118, 125, 129, 133, 134, 135, 139, 141, 147, 150, 154, 159, 160, 165, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

The a(n)-th squarefree semiprime is the first divisible by prime(n).
After a(1) = 1, these are the positions of even terms in the list of all squarefree semiprimes A006881.

Crossrefs

A001358 lists semiprimes, with odds A046315 and evens A100484.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A115392 is the not necessarily squarefree version.
A166237 gives the first differences of squarefree semiprimes.
A270650 and A270652 give the prime indices of squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338898 gives prime indices of semiprimes, with differences A176506.
A338899 gives prime indices of squarefree semiprimes, differences A338900.
A338912 and A338913 give the prime indices of semiprimes.

Programs

  • Mathematica
    rs=First/@FactorInteger[#]&/@Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&];
    Table[Position[rs,i][[1,1]],{i,Union@@rs}]

Formula

A006881(a(n)) = A100484(n).

A114412 Records in semiprime gaps ordered by merit.

Original entry on oeis.org

2, 3, 4, 6, 11, 19, 24, 28, 30, 32, 38, 47, 54, 70, 74, 107, 110, 112, 120, 126, 146
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

There is an associated index list n = 1, 2, 4, 6, 34, 422, 1765, 4585, 8112, 8650, 8861, 75150, ... and an associated semiprime list A001358(n) = 4, 6, 10, 15, 1418, 6559, 17965, 32777, 35103, 35981, 340894, ... - R. J. Mathar, Mar 15 2009

Examples

			Records defined in terms of A065516 and A001358:
.
  n  A065516(n)  A065516(n)/log_10(A001358(n))
  =  ==========  ==============================
  1       2      2 / log_10(4)  = 3.32192809...
  2       3      3 / log_10(6)  = 3.85529162...
  3       1      1 / log_10(9)  = 1.04795163...
  4       4      4 / log_10(10) = 4.00000000
  5       1      1 / log_10(14) = 0.87250286...
  6       6      6 / log_10(15) = 5.10164492...
  7       1      1 / log_10(21) = 0.75630419...
  8       3      3 / log_10(22) = 2.23476557...
  9       1      1 / log_10(25) = 0.71533827...
		

Crossrefs

Programs

  • Mathematica
    sp = 4; m0 = 0;  l = {}; lim = 1000000;
    For[i = 5, i <= lim, i++, If[PrimeOmega[i] == 2, m = (i - sp)/Log[sp]; If[m > m0, m0 = m; AppendTo[l, i - sp]]; sp = i] ]; l (* Robert Price, Oct 29 2018 *)

Formula

a(n) = records in A065516(n)/log_10(A001358(n)) = records in (A001358(n+1) - A001358(n))/log_10(A001358(n)).

Extensions

Corrected and extended by Charles R Greathouse IV, Oct 05 2006
a(16)-a(21) from Donovan Johnson, Feb 17 2010

A338910 Numbers of the form prime(x) * prime(y) where x and y are both odd.

Original entry on oeis.org

4, 10, 22, 25, 34, 46, 55, 62, 82, 85, 94, 115, 118, 121, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 289, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 529, 538, 545, 554
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}     146: {1,21}    314: {1,37}
     10: {1,3}     155: {3,11}    334: {1,39}
     22: {1,5}     166: {1,23}    335: {3,19}
     25: {3,3}     187: {5,7}     341: {5,11}
     34: {1,7}     194: {1,25}    358: {1,41}
     46: {1,9}     205: {3,13}    365: {3,21}
     55: {3,5}     206: {1,27}    382: {1,43}
     62: {1,11}    218: {1,29}    391: {7,9}
     82: {1,13}    235: {3,15}    394: {1,45}
     85: {3,7}     253: {5,9}     415: {3,23}
     94: {1,15}    254: {1,31}    422: {1,47}
    115: {3,9}     274: {1,33}    451: {5,13}
    118: {1,17}    289: {7,7}     454: {1,49}
    121: {5,5}     295: {3,17}    466: {1,51}
    134: {1,19}    298: {1,35}    482: {1,53}
		

Crossrefs

A338911 is the even instead of odd version.
A339003 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338906/A338907 are semiprimes of even/odd weight.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give prime indices of squarefree semiprimes.
A338909 lists semiprimes with non-relatively prime indices.

Programs

  • Maple
    q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
        numtheory[pi](i[1])::odd, l))(ifactors(n)[2]):
    select(q, [$1..1000])[];  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338910(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001222(m) = A195017(m) = 2. - Peter Munn, Jan 17 2021

A338911 Numbers of the form prime(x) * prime(y) where x and y are both even.

Original entry on oeis.org

9, 21, 39, 49, 57, 87, 91, 111, 129, 133, 159, 169, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 361, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}     237: {2,22}    481: {6,12}
     21: {2,4}     247: {6,8}     489: {2,38}
     39: {2,6}     259: {4,12}    497: {4,20}
     49: {4,4}     267: {2,24}    519: {2,40}
     57: {2,8}     301: {4,14}    543: {2,42}
     87: {2,10}    303: {2,26}    551: {8,10}
     91: {4,6}     321: {2,28}    553: {4,22}
    111: {2,12}    339: {2,30}    559: {6,14}
    129: {2,14}    361: {8,8}     579: {2,44}
    133: {4,8}     371: {4,16}    597: {2,46}
    159: {2,16}    377: {6,10}    623: {4,24}
    169: {6,6}     393: {2,32}    669: {2,48}
    183: {2,18}    417: {2,34}    687: {2,50}
    203: {4,10}    427: {4,18}    689: {6,16}
    213: {2,20}    453: {2,36}    703: {8,12}
		

Crossrefs

A338910 is the odd instead of even version.
A339004 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A338899, A270650, A270652 list prime indices of squarefree semiprimes.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338906/A338907 list semiprimes of even/odd weight.
A338909 lists semiprimes with non-relatively prime indices.
A338912 and A338913 list prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.

Programs

  • Maple
    q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
        numtheory[pi](i[1])::even, l))(ifactors(n)[2]):
    select(q, [$1..1000])[];  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • Python
    from math import isqrt
    from sympy import primerange, primepi
    def A338911(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001222(m) = 2 and A195017(m) = -2. - Peter Munn, Jan 17 2021

A131109 a(n) is the smallest semiprime such that difference between a(n) and next semiprime, b(n), is n.

Original entry on oeis.org

9, 4, 6, 10, 69, 15, 26, 169, 146, 237, 95, 1082, 818, 597, 1603, 2705, 2078, 4511, 1418, 2681, 14545, 13863, 37551, 6559, 16053, 55805, 26707, 17965, 308918, 32777, 41222, 35103, 393565, 219509, 153263, 87627, 2263057, 35981, 1789339, 741841, 797542
Offset: 1

Views

Author

Zak Seidov, Sep 24 2007

Keywords

Comments

This is the semiprime analogous to A000230. - Robert G. Wilson v, Jun 13 2013

Examples

			n, b(n)-a(n): 1=10-9, 2=6-4, 3=9-6, 4=14-10, 5=74-69, 6=21-15, 7=33-26, 8=177-169, 9=155-146, 10=247-237, 11=106-95, 12=1094-1082, 13=831-818, 14=611-597, 15=1618-1603, 16=2721-2705, 17=2095-2078, 18=4529-4511, 19=1437-1418, 20=2701-2681, 21=14566-14545, 22=13885-13863, 23=37574-37551, 24=6583-6559, 25=16078-16053, 26=55831-55805, 27=26734-26707, 28=17993-17965, 29=308947-308918, 30=32807-32777, 31=41253-41222, 32=35135-35103, 33=393598-393565, 34=219543-219509, 35=153298-153263, 36=87663-87627, 37=2263094-2263057, 38=36019-35981.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; NextSemiPrime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; nn = 30; t = Table[0, {nn}]; found = 0; sp0 = 4; While[found < nn, sp1 = NextSemiPrime[sp0]; d = sp1 - sp0; If[d <= nn && t[[d]] == 0, t[[d]] = sp0; found++]; sp0 = sp1]; t (* T. D. Noe, Oct 02 2012 *)

Formula

a(n) = A001358(A123375(n)). - T. D. Noe, Sep 28 2007

Extensions

Corrected and extended by T. D. Noe and R. J. Mathar, Sep 28 2007
Previous Showing 11-20 of 63 results. Next